Câu hỏi:
03/11/2024 4,031
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
A. 100;
A. 100;
B. 91;
B. 91;
C. 10;
D. 90.
Trả lời:
Đáp án đúng là: D
*Lời giải
Có 10 cặp vợ chồng nên trong đó có: 10 người đàn ông và 10 người phụ nữ.
Giả sử chọn 1 người trong 10 người đàn ông vậy có 10 cách chọn.
Vì hai người chọn không phải là vợ chồng nên ta chỉ có thể chọn 1 người trong 9 người phụ nữ (loại người phụ nữ là vợ người đàn ông kia). Vậy chọn phụ nữ có 9 cách chọn
Tổng kết, theo quy tắc nhân có 10.9 = 90 (cách chọn)
*Phương pháp giải
- Sử dụng quy tắc nhân:
Giả sử một công việc phải hoàn thành qua hai công đoạn liên tiếp nhau:
- Công đoạn một có m1 cách thực hiện,
- Với mỗi cách thực hiện công đoạn một, có m2 cách thực hiện công đoạn hai.
Khi đó số cách thực hiện công việc là m1 . m2 cách.
*Lý thuyến cần nắm và các dạng bài về quy tắc đếm:
Quy tắc cộng và sơ đồ cây
Giả sử một công việc nào đó có thể thực hiện theo một trong hai phương án khác sau:
- Phương án một có n1 cách thực hiện,
- Phương án hai có n2 cách thực hiện (không trùng với bất kì cách thực hiện nào của phương án một).
Khi đó số cách thực hiện công việc sẽ là: n1 + n2 cách.
Chú ý:
- Sơ đồ minh hoạ cách phân chia trường hợp được gọi là sơ đồ hình cây.
- Trong bài toán đếm, người ta thường dùng sơ đồ hình cây để minh họa, giúp cho việc đếm thuận tiện và không bỏ sót trường hợp.
- Ta áp dụng quy tắc cộng cho một công việc có nhiều phương án khi các phương án đó phải rời nhau, không phụ thuộc vào nhau (độc lập với nhau).
Quy tắc nhân
Giả sử một công việc phải hoàn thành qua hai công đoạn liên tiếp nhau:
- Công đoạn một có m1 cách thực hiện,
- Với mỗi cách thực hiện công đoạn một, có m2 cách thực hiện công đoạn hai.
Khi đó số cách thực hiện công việc là m1 . m2 cách.
Chú ý: Quy tắc nhân áp dụng để tính số cách thực hiện một công việc có nhiều công đoạn, các công đoạn nối tiếp nhau và những công đoạn này độc lập với nhau.
Kết hợp quy tắc cộng và quy tắc nhân
- Hầu hết các bài toán đếm trong thực tế sẽ phức tạp và thường phải áp dụng cả hai quy tắc cộng và nhân.
- Quy tắc cộng được áp dụng khi công việc được chia thành các phương án phân biệt (thực hiện một trong các phương án để hoàn thành công việc).
- Quy tắc nhân được áp dụng khi công việc có nhiều công đoạn nối tiếp nhau (phải thực hiện tất cả các công đoạn để hoàn thành công việc).
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Quy tắc đếm - Toán 10 Kết nối tri thức
Giải Toán 10 Bài 23 (Kết nối tri thức): Quy tắc đếm
TOP 22 câu Trắc nghiệm Quy tắc đếm (Kết nối tri thức 2024) có đáp án - Toán 10
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số?
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số?
Câu 2:
Lớp 10A có 20 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra một học sinh làm lớp trưởng.
Lớp 10A có 20 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra một học sinh làm lớp trưởng.
Câu 3:
Có bao nhiêu số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau
Có bao nhiêu số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau
Câu 4:
Bạn An muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn An có bao nhiêu cách chọn.
Bạn An muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn An có bao nhiêu cách chọn.
Câu 6:
Có bao nhiêu số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8.
Có bao nhiêu số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8.
Câu 7:
Trên giá sách có 5 quyển sách Tiếng Nga khác nhau, 6 quyển sách Tiếng Anh khác nhau và 8 quyển sách Tiếng Việt khác nhau. Số cách chọn hai quyển sách khác loại là:
Trên giá sách có 5 quyển sách Tiếng Nga khác nhau, 6 quyển sách Tiếng Anh khác nhau và 8 quyển sách Tiếng Việt khác nhau. Số cách chọn hai quyển sách khác loại là:
Câu 8:
Trong một đội văn nghệ có 6 nam và 8 nữ. Có bao nhiêu cách chọn ra một bạn hát đơn ca
Câu 9:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Câu 10:
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Câu 11:
Bạn Dũng có 8 quyển truyện tranh khác nhau và 7 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có 8 quyển truyện tranh khác nhau và 7 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Câu 12:
Cho các chữ số 2, 3, 4, 5, 6, 7 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là:
Cho các chữ số 2, 3, 4, 5, 6, 7 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là:
Câu 13:
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số đôi một khác nhau từ các số trên.
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số đôi một khác nhau từ các số trên.
Câu 14:
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và 1 nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn.
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và 1 nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn.