Câu hỏi:
22/07/2024 499
Có bao nhiêu số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8.
Có bao nhiêu số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8.
A. 252;
A. 252;
B. 520;
B. 520;
C. 480;
D. 368.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B.
Gọi số cần tìm có dạng: , (a ≠ 0; a, b, c ∈ {0; 1; 2; 4; 5; 6; 8}).
Vì là số chẵn nên d có thể chọn một trong các số 0; 2; 4; 6; 8.
Trường hợp 1: d = 0
Công đoạn 1, chọn số d có 1 cách chọn (d = 0)
Công đoạn 2, chọn số a có 6 cách chọn (vì a ≠ 0 nên a có thể chọn một trong 6 số (1; 2; 4; 5; 6; 8)
Công đoạn 3, chọn số b có 5 cách chọn (vì b ≠ d, b ≠ a nên b không được chọn lại số a, d đã chọn)
Công đoạn 4, chọn số c có 4 cách chọn (vì c ≠ d, c ≠a, c ≠ b nên c không được chọn lại các số mà a, b, d đã chọn)
Suy ra trường hợp 1 ta có số các chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8 là: 6.5.4.1 = 120 (số)
Trường hợp 2. d ≠ 0
Công đoạn 1, chọn số d có 4 cách chọn (vì d ≠ 0 nên d chỉ có thể chọn một trong 4 số 2; 4; 6; 8).
Công đoạn 2, chọn số a có 5 cách chọn (vì a ≠ 0, a ≠ d nên a không được chọn là số 0 và số d đã chọn, vậy a có 5 số để chọn).
Công đoạn 3, chọn số b có 5 cách chọn (vì b ≠ a, b ≠ d nên b không được chọn số a và d đã chọn, vậy b còn 5 số để chọn).
Công đoạn 4, chọn số c có 4 cách chọn (vì c ≠ a, c ≠ b, c ≠ d nên c không được chọn số mà a, b, d đã chọn, vậy c còn 4 số để chọn).
Suy ra trường hợp 2 ta có số các chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8 là: 4.5.5.4 = 400 (số)
Áp dụng quy tắc cộng ta có số các chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8 là: 120 + 400 = 520 (số)
Hướng dẫn giải
Đáp án đúng là: B.
Gọi số cần tìm có dạng: , (a ≠ 0; a, b, c ∈ {0; 1; 2; 4; 5; 6; 8}).
Vì là số chẵn nên d có thể chọn một trong các số 0; 2; 4; 6; 8.
Trường hợp 1: d = 0
Công đoạn 1, chọn số d có 1 cách chọn (d = 0)
Công đoạn 2, chọn số a có 6 cách chọn (vì a ≠ 0 nên a có thể chọn một trong 6 số (1; 2; 4; 5; 6; 8)
Công đoạn 3, chọn số b có 5 cách chọn (vì b ≠ d, b ≠ a nên b không được chọn lại số a, d đã chọn)
Công đoạn 4, chọn số c có 4 cách chọn (vì c ≠ d, c ≠a, c ≠ b nên c không được chọn lại các số mà a, b, d đã chọn)
Suy ra trường hợp 1 ta có số các chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8 là: 6.5.4.1 = 120 (số)
Trường hợp 2. d ≠ 0
Công đoạn 1, chọn số d có 4 cách chọn (vì d ≠ 0 nên d chỉ có thể chọn một trong 4 số 2; 4; 6; 8).
Công đoạn 2, chọn số a có 5 cách chọn (vì a ≠ 0, a ≠ d nên a không được chọn là số 0 và số d đã chọn, vậy a có 5 số để chọn).
Công đoạn 3, chọn số b có 5 cách chọn (vì b ≠ a, b ≠ d nên b không được chọn số a và d đã chọn, vậy b còn 5 số để chọn).
Công đoạn 4, chọn số c có 4 cách chọn (vì c ≠ a, c ≠ b, c ≠ d nên c không được chọn số mà a, b, d đã chọn, vậy c còn 4 số để chọn).
Suy ra trường hợp 2 ta có số các chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8 là: 4.5.5.4 = 400 (số)
Áp dụng quy tắc cộng ta có số các chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0; 1; 2; 4; 5; 6; 8 là: 120 + 400 = 520 (số)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số?
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số?
Câu 2:
Lớp 10A có 20 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra một học sinh làm lớp trưởng.
Lớp 10A có 20 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra một học sinh làm lớp trưởng.
Câu 3:
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:
Câu 4:
Có bao nhiêu số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau
Có bao nhiêu số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau
Câu 5:
Bạn An muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn An có bao nhiêu cách chọn.
Bạn An muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn An có bao nhiêu cách chọn.
Câu 7:
Trên giá sách có 5 quyển sách Tiếng Nga khác nhau, 6 quyển sách Tiếng Anh khác nhau và 8 quyển sách Tiếng Việt khác nhau. Số cách chọn hai quyển sách khác loại là:
Trên giá sách có 5 quyển sách Tiếng Nga khác nhau, 6 quyển sách Tiếng Anh khác nhau và 8 quyển sách Tiếng Việt khác nhau. Số cách chọn hai quyển sách khác loại là:
Câu 8:
Trong một đội văn nghệ có 6 nam và 8 nữ. Có bao nhiêu cách chọn ra một bạn hát đơn ca
Câu 9:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ đứng xen kẽ:
Câu 10:
Bạn Dũng có 8 quyển truyện tranh khác nhau và 7 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có 8 quyển truyện tranh khác nhau và 7 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Câu 11:
Cho các chữ số 2, 3, 4, 5, 6, 7 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là:
Cho các chữ số 2, 3, 4, 5, 6, 7 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là:
Câu 12:
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Cho các số 1; 2; 3; 4; 5; 6; 7. Có bao nhiêu số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng chữ số 3
Câu 13:
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số đôi một khác nhau từ các số trên.
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số đôi một khác nhau từ các số trên.
Câu 14:
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và 1 nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn.
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và 1 nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn.