Câu hỏi:
22/07/2024 522Cho tam giác ABC có A(5;3) : B(2;-1) và C(-1; 5). Tính tọa độ chân đường cao vẽ từ A.
A. (1;2)
B. ( 1;1)
C. (1;-1)
D. (-2; 1)
Trả lời:
Chọn B.
Gọi A’(x; y) là tọa độ chân đường cao vẽ từ A;
và
Ta có AA’ và BC vuông góc với nhau nên
Suy ra -3(x - 5) + 6(y - 3) = 0 hay x - 2y + 1 = 0 (1)
Và
cùng phương nên 2x + y – 3 = 0 (2)
Từ (1) và (2) suy ra x = y = 1
Vậy điểm A’ cần tìm có tọa độ (1; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có b = 7; c = 5, cosA = 3/5. Đường cao ha của tam giác ABC là
Câu 3:
Cho tam giác ABC thỏa mãn sin2A = sinB. sinC. Hỏi mệnh đề nào đúng.
Câu 4:
Trong mặt phẳng tọa độ cho ba điểm A(1; 4) ; B( -2; -2) và C( 4; 2). Xác định tọa độ điểm M sao cho tổng MA2 + 2MB2 + 3MC2 nhỏ nhất.
Câu 5:
Cho các điểm A(1;1) ; B( 2;4) và C(10; -2) . Góc BAC bằng bao nhiêu độ?
Câu 6:
Cho tam giác ABC thỏa mãn: a.sinA + b.sinB + c.sinC = ha + hb + hc. Tìm mệnh đề đúng?
Câu 7:
Cho hình chữ nhật ABCD biết AD = 1 . Giả sử E là trung điểm AB và thỏa mãn .Tính độ dài cạnh AB.
Câu 10:
Cho tam giác ABC có A(5;3) : B(2;-1) và C(-1; 5). Tính diện tích tam giác ABC.
Câu 11:
Cho tam giác ABC có A(5;3); B(2;-1) và C(-1; 5). Tìm tọa độ trực tâm tam giác ABC.
Câu 12:
Cho tam giác ABC vuông tại B có AB=1. Trên tia đối của CA lấy điểm D sao cho CD = AB. Giả sử góc CBD bằng 300. Tính AC.
Câu 14:
Tam giác ABC có BC = a; CA = b và AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Câu 15:
Một tam giác có ba cạnh là 52; 56; 60. Bán kính đường tròn ngoại tiếp là: