Câu hỏi:
19/07/2024 718Cho hình chữ nhật ABCD biết AD = 1 . Giả sử E là trung điểm AB và thỏa mãn .Tính độ dài cạnh AB.
A. 1
B. 2
C .
D.
Trả lời:
Chọn C.
Đặt AB = 2x suy ra AE = EB = x.
Vì góc BDE nhọn nên suy ra
Theo định lí Pitago ta có:
DE2 = AD2 + AE2 = 1 + x2 nên
BD2 = DC2 + BC2 = 4x2 + 1 nên
Áp dụng định lí côsin trong tam giác BDE ta có
Suy ra: 4x4 - 4x2 + 1 = 0 nên (do x > 0)
Vậy độ dài cạnh AB là .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có b = 7; c = 5, cosA = 3/5. Đường cao ha của tam giác ABC là
Câu 3:
Cho tam giác ABC thỏa mãn sin2A = sinB. sinC. Hỏi mệnh đề nào đúng.
Câu 4:
Trong mặt phẳng tọa độ cho ba điểm A(1; 4) ; B( -2; -2) và C( 4; 2). Xác định tọa độ điểm M sao cho tổng MA2 + 2MB2 + 3MC2 nhỏ nhất.
Câu 5:
Cho các điểm A(1;1) ; B( 2;4) và C(10; -2) . Góc BAC bằng bao nhiêu độ?
Câu 6:
Cho tam giác ABC thỏa mãn: a.sinA + b.sinB + c.sinC = ha + hb + hc. Tìm mệnh đề đúng?
Câu 7:
Cho tam giác ABC có A(5;3) : B(2;-1) và C(-1; 5). Tính tọa độ chân đường cao vẽ từ A.
Câu 10:
Cho tam giác ABC có A(5;3); B(2;-1) và C(-1; 5). Tìm tọa độ trực tâm tam giác ABC.
Câu 11:
Cho tam giác ABC có A(5;3) : B(2;-1) và C(-1; 5). Tính diện tích tam giác ABC.
Câu 12:
Cho tam giác ABC vuông tại B có AB=1. Trên tia đối của CA lấy điểm D sao cho CD = AB. Giả sử góc CBD bằng 300. Tính AC.
Câu 14:
Biết A(1;-1) và B(3;0) là hai đỉnh của hình vuông ABCD. Tìm tọa độ các đỉnh C ?
Câu 15:
Tam giác ABC có BC = a; CA = b và AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng: