Câu hỏi:
19/07/2024 128
Cho phương trình . Biết phương trình đã cho có một nghiệm có dạng , với là phân số tối giản và b > 0. Khi đó giá trị biểu thức a2 – b2 bằng:
Cho phương trình . Biết phương trình đã cho có một nghiệm có dạng , với là phân số tối giản và b > 0. Khi đó giá trị biểu thức a2 – b2 bằng:
A. 55;
A. 55;
B. 0;
B. 0;
C. ;
D. –55.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có .
.
Bình phương hai vế của phương trình trên, ta được:
x2 – 3x – 4 = 4(x + 1)2
⇒ x2 – 3x – 4 = 4(x2 + 2x + 1)
⇒ 3x2 + 11x + 8 = 0
⇒ x = –1 hoặc .
Với x = –1, ta có (vô lý)
Với , ta có (đúng)
Vì vậy khi thay lần lượt các giá trị x = –1 và vào phương trình đã cho, ta thấy chỉ có thỏa mãn.
Vậy phương trình đã cho có nghiệm là .
Khi đó a = –8 và b = 3 (do b > 0).
Suy ra a2 – b2 = (–8)2 – 32 = 55.
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Ta có .
.
Bình phương hai vế của phương trình trên, ta được:
x2 – 3x – 4 = 4(x + 1)2
⇒ x2 – 3x – 4 = 4(x2 + 2x + 1)
⇒ 3x2 + 11x + 8 = 0
⇒ x = –1 hoặc .
Với x = –1, ta có (vô lý)
Với , ta có (đúng)
Vì vậy khi thay lần lượt các giá trị x = –1 và vào phương trình đã cho, ta thấy chỉ có thỏa mãn.
Vậy phương trình đã cho có nghiệm là .
Khi đó a = –8 và b = 3 (do b > 0).
Suy ra a2 – b2 = (–8)2 – 32 = 55.
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho ∆MNP vuông tại M có MN dài hơn MP 10 cm. Biết chu vi của ∆MNP là 50 cm. Độ dài của cạnh NP bằng khoảng:
Cho ∆MNP vuông tại M có MN dài hơn MP 10 cm. Biết chu vi của ∆MNP là 50 cm. Độ dài của cạnh NP bằng khoảng:
Câu 4:
Khoảng cách từ nhà An ở vị trí A đến nhà Bình là 200 m. Từ nhà, nếu An đi x mét theo phương tạo với AB một góc 120° thì sẽ đến nhà bác Mai ở vị trí M và nếu đi thêm 300 m nữa thì sẽ đến siêu thị ở vị trí S.
Biết rằng quãng đường từ nhà Bình đến siêu thị gấp đôi quãng đường từ nhà Bình đến nhà bác Mai. Khi đó quãng đường từ nhà An đến nhà bác Mai là: