Câu hỏi:
22/07/2024 471
Cho hình chóp S.ABC trong đó SA, AB, BC vuông góc với nhau từng đôi một. Biết SA = 3a, AB = , BC = . Khoảng cách từ B đến SC bằng
A.
B. 2a
C.
D.
Trả lời:
Đáp án: B
Giải thích:
Đáp án:
Vì SA, AB, BC vuông góc với nhau từng đôi một nên CB⊥SB
Kẻ BH⊥SC, khi đó d(B;SC)=BH
Ta có: SB=
Trong tam giác vuông SBC ta có:
Đáp án: B
Giải thích:
Đáp án:
Vì SA, AB, BC vuông góc với nhau từng đôi một nên CB⊥SB
Kẻ BH⊥SC, khi đó d(B;SC)=BH
Ta có: SB=
Trong tam giác vuông SBC ta có:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp có đáy ABCD là hình thang vuông tại A và B với . Hai mặt phẳng và cùng vuông góc với mặt phẳng đáy .Biết mặt phẳng hợp với một góc . tính khoảng cách giữa CD và SB.
Câu 2:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H,K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
Câu 3:
Cho ba vectơ không đồng phẳng xét các vectơ
;
Chọn mệnh đề đúng trong các mệnh đề sau:
Cho ba vectơ không đồng phẳng xét các vectơ
;
Chọn mệnh đề đúng trong các mệnh đề sau:
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)