Câu hỏi:
18/07/2024 1,024
Cho tứ diện ABCD có cạnh AB, BC, CD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?
A. Góc giữa AC và (BCD) là góc ACB.
B. Góc giữa AD và (ABC) là góc ADB.
C. Góc giữa AC và (ABD) là góc CAB.
D. Góc giữa CD và (ABD) là góc CBD.
Trả lời:
Đáp án: A
Giải thích:
Đáp án:
Từ giả thiết ta có ⇒AB⊥(BCD).
Do đó (AC,(BCD)=(AC,BC) =
Đáp án: A
Giải thích:
Đáp án:
Từ giả thiết ta có ⇒AB⊥(BCD).
Do đó (AC,(BCD)=(AC,BC) =
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp có đáy ABCD là hình thang vuông tại A và B với . Hai mặt phẳng và cùng vuông góc với mặt phẳng đáy .Biết mặt phẳng hợp với một góc . tính khoảng cách giữa CD và SB.
Câu 2:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H,K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
Câu 3:
Cho ba vectơ không đồng phẳng xét các vectơ
;
Chọn mệnh đề đúng trong các mệnh đề sau:
Cho ba vectơ không đồng phẳng xét các vectơ
;
Chọn mệnh đề đúng trong các mệnh đề sau:
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)