Câu hỏi:
20/07/2024 2,363
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
A. M(2; –1);
A. M(2; –1);
B. M(–2; –1);
B. M(–2; –1);
C. M(–2; 1);
C. M(–2; 1);
D. M(2; 1).
D. M(2; 1).
Trả lời:

Đáp án đúng là: A
Chọn A(0; 1) ∈ ∆.
Đường thẳng ∆ có vectơ pháp tuyến →n=(1;1).
Suy ra đường thẳng ∆ nhận →u=(1;−1) làm vectơ chỉ phương.
Đường thẳng ∆ đi qua A(0; 1) và có vectơ chỉ phương →u=(1;−1).
Suy ra phương trình tham số của ∆: {x=ty=1−t
Ta có M ∈ ∆. Suy ra M(t; 1 – t).
Ta có →NM=(t+1;−2−t).
Suy ra NM=|→NM|=√(t+1)2+(−2−t)2.
Theo đề, ta có MN = 5.
⇔ (t + 1)2 + (–2 – t)2 = 25.
⇔ t2 + 2t + 1 + 4 + 4t + t2 = 25.
⇔ 2t2 + 6t – 20 = 0.
⇔ t = 2 hoặc t = –5.
Với t = 2, ta có tọa độ M(2; –1).
Với t = –5, ta có tọa độ M(–5; 6).
Vậy ta chọn phương án A.
Đáp án đúng là: A
Chọn A(0; 1) ∈ ∆.
Đường thẳng ∆ có vectơ pháp tuyến →n=(1;1).
Suy ra đường thẳng ∆ nhận →u=(1;−1) làm vectơ chỉ phương.
Đường thẳng ∆ đi qua A(0; 1) và có vectơ chỉ phương →u=(1;−1).
Suy ra phương trình tham số của ∆: {x=ty=1−t
Ta có M ∈ ∆. Suy ra M(t; 1 – t).
Ta có →NM=(t+1;−2−t).
Suy ra NM=|→NM|=√(t+1)2+(−2−t)2.
Theo đề, ta có MN = 5.
⇔ (t + 1)2 + (–2 – t)2 = 25.
⇔ t2 + 2t + 1 + 4 + 4t + t2 = 25.
⇔ 2t2 + 6t – 20 = 0.
⇔ t = 2 hoặc t = –5.
Với t = 2, ta có tọa độ M(2; –1).
Với t = –5, ta có tọa độ M(–5; 6).
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một đường tròn có tâm I(3; –2), tiếp xúc với đường thẳng ∆: x – 5y + 1 = 0. Bán kính của đường tròn đó bằng:
Một đường tròn có tâm I(3; –2), tiếp xúc với đường thẳng ∆: x – 5y + 1 = 0. Bán kính của đường tròn đó bằng:
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x – 4y – 1 = 0 và điểm I(1; – 2). Gọi (C) là đường tròn tâm I và cắt đường thẳng d tại hai điểm A và B sao cho tam giác IAB có diện tích bằng 4. Viết phương trình đường tròn (C).
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x – 4y – 1 = 0 và điểm I(1; – 2). Gọi (C) là đường tròn tâm I và cắt đường thẳng d tại hai điểm A và B sao cho tam giác IAB có diện tích bằng 4. Viết phương trình đường tròn (C).
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(– 2; 3) và đi qua điểm A(6; 0). Viết phương trình đường tròn (C).
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(– 2; 3) và đi qua điểm A(6; 0). Viết phương trình đường tròn (C).
Câu 4:
Năng suất lúa hè thu (tạ/ha) năm 1998 của 31 tỉnh ở Việt Nam được thống kê trong bảng sau:
Năng suất lúa (tạ/ha)
25
30
35
40
45
Tần số
4
7
9
6
5
So sánh Q1 và Q2 ?
Năng suất lúa hè thu (tạ/ha) năm 1998 của 31 tỉnh ở Việt Nam được thống kê trong bảng sau:
Năng suất lúa (tạ/ha) |
25 |
30 |
35 |
40 |
45 |
Tần số |
4 |
7 |
9 |
6 |
5 |
So sánh Q1 và Q2 ?
Câu 5:
Cho đường tròn (C): (x – 3)2 + (y – 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là:
Cho đường tròn (C): (x – 3)2 + (y – 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là:
Câu 6:
Hai cung thủ A, B thực hiện bắn 10 lượt bắn và kết quả từng lượt bắn được ghi ở bảng sau:
Cung thủ A
8
9
10
7
6
10
6
7
9
8
Cung thủ B
10
6
8
7
9
9
8
7
8
8
Hãy cho biết cung thủ nào có phong độ ổn định hơn?
Hai cung thủ A, B thực hiện bắn 10 lượt bắn và kết quả từng lượt bắn được ghi ở bảng sau:
Cung thủ A |
8 |
9 |
10 |
7 |
6 |
10 |
6 |
7 |
9 |
8 |
Cung thủ B |
10 |
6 |
8 |
7 |
9 |
9 |
8 |
7 |
8 |
8 |
Hãy cho biết cung thủ nào có phong độ ổn định hơn?
Câu 7:
Thời gian chạy 50m của 20 học sinh được ghi lại trong bảng dưới đây:
Tứ phân vị Q1, Q2, Q3 của bảng số liệu này lần lượt là:
Thời gian chạy 50m của 20 học sinh được ghi lại trong bảng dưới đây:

Tứ phân vị Q1, Q2, Q3 của bảng số liệu này lần lượt là:
Câu 8:
Cho số gần đúng a = 22 648 024 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Cho số gần đúng a = 22 648 024 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Câu 10:
Phương trình chính tắc của parabol (P) có đường chuẩn ∆: 2x + 6 = 0 là:
Phương trình chính tắc của parabol (P) có đường chuẩn ∆: 2x + 6 = 0 là:
Câu 11:
Cho hypebol (H): x216−y29=1 và đường thẳng ∆: x + y = 3. Tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ bằng giá trị nào sau đây?
Cho hypebol (H): x216−y29=1 và đường thẳng ∆: x + y = 3. Tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ bằng giá trị nào sau đây?
Câu 12:
Gieo một đồng xu ba lần liên tiếp. Xác suất để xuất hiện ít nhất một lần mặt ngửa là:
Gieo một đồng xu ba lần liên tiếp. Xác suất để xuất hiện ít nhất một lần mặt ngửa là:
Câu 13:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1, d2 lần lượt có vectơ chỉ phương là →a1, →a2. Gọi M là một điểm nằm trên đường thẳng d1. Khi đó d1 trùng d2 khi và chỉ khi:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1, d2 lần lượt có vectơ chỉ phương là →a1, →a2. Gọi M là một điểm nằm trên đường thẳng d1. Khi đó d1 trùng d2 khi và chỉ khi:
Câu 14:
Cho nhị thức (2x2+1x3)n, trong đó số nguyên n thỏa mãn A3n=12n. Tìm số hạng chứa x5 trong khai triển.
Cho nhị thức (2x2+1x3)n, trong đó số nguyên n thỏa mãn A3n=12n. Tìm số hạng chứa x5 trong khai triển.
Câu 15:
Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình đường tròn khi và chỉ khi:
Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình đường tròn khi và chỉ khi: