Câu hỏi:
22/07/2024 357
Cho ba vectơ . Điều kiện nào dưới đây khẳng định ba vectơ đồng phẳng ?
A. Tồn tại ba số thực m,n,p thỏa mãn m+n+p=0 và
B. Tồn tại ba số thực m,n,p thỏa mãn m+n+p≠0 và
C. Tồn tại ba số thực m,n,p sao cho
D. Giá của đồng quy.
Trả lời:
Đáp án: B
Giải thích:
Đáp án:
Dựa vào đáp án, ta thấy rằng:
+) Với m + n + p = 0 ⇒ m = n = p = 0 suy ra nên chưa kết luận được ba vectơ đồng phẳng.
+) Với m + n + p ≠ 0 suy ra tồn tại ít nhất một số khác 0.
Giả sử m≠0, ta có
Suy ra tồn tại n, p để ba vectơ đồng phẳng.
Đáp án: B
Giải thích:
Đáp án:
Dựa vào đáp án, ta thấy rằng:
+) Với m + n + p = 0 ⇒ m = n = p = 0 suy ra nên chưa kết luận được ba vectơ đồng phẳng.
+) Với m + n + p ≠ 0 suy ra tồn tại ít nhất một số khác 0.
Giả sử m≠0, ta có
Suy ra tồn tại n, p để ba vectơ đồng phẳng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp có đáy ABCD là hình thang vuông tại A và B với . Hai mặt phẳng và cùng vuông góc với mặt phẳng đáy .Biết mặt phẳng hợp với một góc . tính khoảng cách giữa CD và SB.
Câu 2:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H,K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
Câu 3:
Cho ba vectơ không đồng phẳng xét các vectơ
;
Chọn mệnh đề đúng trong các mệnh đề sau:
Cho ba vectơ không đồng phẳng xét các vectơ
;
Chọn mệnh đề đúng trong các mệnh đề sau:
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)