Câu hỏi:
23/07/2024 5,223
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
A. m < 28;
A. m < 28;
B. m < 0 hoặc m > 28
B. m < 0 hoặc m > 28
C. 0 < m < 28
C. 0 < m < 28
D. m > 0.
D. m > 0.
Trả lời:
Đáp án đúng là: B
Để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm khi và chỉ khi ∆ ≥ 0
\( \Leftrightarrow \) (m + 2)2 – 4(8m + 1) ≥ 0 \( \Leftrightarrow \) m2 – 28m ≥ 0
Xét f(m) = m2 – 28m có ∆ = 784 > 0 có hai nghiệm là m = 0; m = 28 và a = 1 > 0. Ta có bảng xét dấu
m
–∞ 0 28 + ∞
f(m)
+ 0 – 0 +
Từ bảng xét dấu ta có để m2 – 28m ≥ 0 thì m ≤ 0 hoặc m ≥ 28.
Vậy với m ≤ 0 hoặc m ≥ 28 thì phương trình đã cho có nghiệm.
Đáp án đúng là: B
Để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm khi và chỉ khi ∆ ≥ 0
\( \Leftrightarrow \) (m + 2)2 – 4(8m + 1) ≥ 0 \( \Leftrightarrow \) m2 – 28m ≥ 0
Xét f(m) = m2 – 28m có ∆ = 784 > 0 có hai nghiệm là m = 0; m = 28 và a = 1 > 0. Ta có bảng xét dấu
m |
–∞ 0 28 + ∞ |
f(m) |
+ 0 – 0 + |
Từ bảng xét dấu ta có để m2 – 28m ≥ 0 thì m ≤ 0 hoặc m ≥ 28.
Vậy với m ≤ 0 hoặc m ≥ 28 thì phương trình đã cho có nghiệm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ
Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ
Câu 3:
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Câu 4:
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Câu 6:
Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Câu 8:
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Câu 9:
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Câu 10:
Tìm m để – 2x2 + (m + 2)x + m – 4 < 0 với mọi x \( \in \) ℝ?
Tìm m để – 2x2 + (m + 2)x + m – 4 < 0 với mọi x \( \in \) ℝ?
Câu 12:
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?