Trắc nghiệm Toán 10 Bài 2. Giải bất phương trình bậc hai một ẩn có đáp án
Trắc nghiệm Toán 10 Bài 2. Giải bất phương trình bậc hai một ẩn có đáp án
-
312 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
20/07/2024Tập nghiệm của bất phương trình x2 + 4x + 4 > 0 là:
Đáp án đúng là: C
Tam thức bậc hai f(x) = x2 + 4x + 4 có ∆ = 0; nghiệm là x = – 2 và a = 1 > 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có x2 + 4x + 4 > 0 với mọi x \( \in \) (– ∞; – 2)\( \cup \)(– 2; + ∞).
Câu 2:
19/07/2024Tập nghiệm của bất phương trình x2 – 1 > 0 là:
Đáp án đúng là: D
Tam thức bậc hai f(x) = x2 – 1 có ∆ = 4 > 0; hai nghiệm phân biệt là x = – 1; x = 1 và a = 1 > 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có x2 – 1 > 0 với mọi x \( \in \) (–∞; –1)\( \cup \)(1; +∞).
Câu 3:
13/07/2024Tập nghiệm của bất phương trình x2 – x – 6 ≤ 0 là:
Đáp án đúng là: C
Tam thức bậc hai f(x) = x2 – x – 6 có ∆ = 25 > 0; hai nghiệm phân biệt là x = – 2; x = 3 và a = 1 > 0
Ta có bảng xét dấu
x |
–∞ –2 3 + ∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có x2 – x – 6 ≤ 0 với mọi x \( \in \) [– 2; 3].
Câu 4:
16/07/2024Tập ngiệm của bất phương trình x(x + 5) ≤ 2(x2 + 2) là
Đáp án đúng là: A
Ta có: x(x + 5) ≤ 2(x2 + 2) \( \Leftrightarrow \) x2 – 5x + 4 ≥ 0.
Xét tam thức f(x) = x2 – 5x + 4 có ∆ = 9 > 0, hai nghiệm phân biệt là x = 1; x = 4 và a = 1 > 0.
Ta có bảng xét dấu :
x |
- ∞ 1 4 + ∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là (– ∞; 1]\( \cup \)[4; + ∞).
Câu 5:
20/07/2024Tập nghiệm của bất phương trình 2x2 – 7x – 15 ≥ 0 là:
Đáp án đúng là: A
Xét tam thức f(x) = 2x2 – 7x – 15 có ∆ = 169 > 0, hai nghiệm phân biệt là x = 5; x = \( - \frac{3}{2}\) và a = 2 > 0.
Ta có bảng xét dấu :
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là \[\left( {--\infty ; - \frac{3}{2}}
Câu 6:
21/07/2024Tìm tất cả các giá trị của m để bất phương trình mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ
Đáp án đúng là: D
Đặt f(x) = mx2 – x + m là tam thức bậc hai với a = m, b = – 1 và c = m
Với m = 0 thì f(x) = – x , f(x) ≥ 0 ⇔ – x ≥ 0 ⇔ x ≤ 0. Vậy m = 0 không thỏa mãn.
Với m ≠ 0 thì f(x) = mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ \( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = {1^2} - 4.m.m \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\1 - 4{m^2} \le 0\end{array} \right.\)
Xét f(m) = 1 – 4m2 có ∆ = 16 > 0, hai nghiệm phân biệt là x = \( - \frac{1}{2}\); x = \(\frac{1}{2}\) và a = – 4 < 0. Ta có bảng xét dấu
Từ bảng xét dấu ta có để 1 – 4m2 ≤ 0 thì m\( \in \left( { - \infty ; - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2}; + \infty } \right)\)
Vậy để mx2 – x + m ≥ 0 với mọi x \( \in \) ℝ \( \Leftrightarrow \) \(\left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m \le - \frac{1}{2}\\m \ge \frac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow m \ge \frac{1}{2}\)
Câu 7:
20/07/2024Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?
Đáp án đúng là: D
Bất phương trình x2 – x + m ≤ 0 vô nghiệm \( \Leftrightarrow \) x2 – x + m > 0 với mọi x \( \in \) ℝ
\( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta = {\left( { - 1} \right)^2} - 4.1.m < 0\end{array} \right.\)\( \Leftrightarrow m > \frac{1}{4}\)
Câu 8:
21/07/2024Gọi S là tập nghiệm của bất phương trình x2 – 8x + 7 ≥ 0. Trong các tập hợp sau, tập nào không là tập con của S?
Đáp án đúng là: D
Xét tam thức f(x) = x2 – 8x + 7 có ∆ = 36 > 0, hai nghiệm phân biệt là x = 1; x = 7 và a = 1 > 0
Ta có bảng xét dấu
x |
–∞ 1 7 + ∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là S = (– ∞; 1]\( \cup \)[7; + ∞);
Vậy tập không phải là con của tập S là [6; + ∞).
Câu 9:
23/07/2024Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm
Đáp án đúng là: B
Để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm khi và chỉ khi ∆ ≥ 0
\( \Leftrightarrow \) (m + 2)2 – 4(8m + 1) ≥ 0 \( \Leftrightarrow \) m2 – 28m ≥ 0
Xét f(m) = m2 – 28m có ∆ = 784 > 0 có hai nghiệm là m = 0; m = 28 và a = 1 > 0. Ta có bảng xét dấu
m |
–∞ 0 28 + ∞ |
f(m) |
+ 0 – 0 + |
Từ bảng xét dấu ta có để m2 – 28m ≥ 0 thì m ≤ 0 hoặc m ≥ 28.
Vậy với m ≤ 0 hoặc m ≥ 28 thì phương trình đã cho có nghiệm.
Câu 10:
22/07/2024Tìm m để x2 – 2(2m – 3)x + 4m – 3 > 0 với mọi x \( \in \) ℝ?
Đáp án đúng là: D
Vì a = 1 > 0 nên để x2 – 2(2m – 3)x + 4m – 3 > 0 với mọi x \( \in \) ℝ thì ∆’ < 0
Ta có ∆’ = (2m – 3)2 – 1.(4m – 3) = 4m2 – 16m + 12 < 0
Xét f(m) = 4m2 – 16m + 12 có ∆ = 64 > 0, hai nghiệm phân biệt là m = 1; m = 3 và a = 4 > 0. Ta có bảng xét dấu
m |
–∞ 1 3 + ∞ |
f(m) |
+ 0 – 0 + |
Từ bảng xét dấu ta có để 4m2 – 16m + 12 < 0 thi 1 < m < 3.
Vậy với 1 < m < 3 thì x2 – 2(2m – 3)x + 4m – 3 > 0.
Câu 11:
13/07/2024Tìm m để – 2x2 + (m + 2)x + m – 4 < 0 với mọi x \( \in \) ℝ?
Đáp án đúng là: A
Để –2x2 + (m + 2)x + m – 4 < 0 với mọi x \( \in \) ℝ\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta < 0\\a < 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 2 < 0\\{\left( {m + 2} \right)^2} + 8\left( {m - 4} \right) < 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 2 < 0\\{m^2} + 12m - 28 < 0\end{array} \right.\]
Xét f(m) = m2 + 12m – 28 có ∆ = 256 > 0, hai nghiệm phân biệt là m = 2; m = –14 và a = – 2 < 0
Ta có bảng xét dấu
m |
- ∞ - 14 2 + ∞ |
f(m) |
+ 0 - 0 + |
Từ bảng xét dấu ta có: Để m2 + 12m – 28 < 0 thì – 14 < m < 2.
Vậy với – 14 < m < 2 thì – 2x2 + (m + 2)x + m – 4 < 0 với mọi x ∈ ℝ.
Câu 12:
20/07/2024Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ
Đáp án đúng là: B
Ta có (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ \( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta < 0\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2 > 0\\ - {m^2} - 4m < 0\end{array} \right.\]
Xét f(m) = – m2 – 4m có ∆ = 16 > 0, hai nghiệm phân biệt là m = 0; m = – 4 và a = – 1 < 0. Ta có bảng xét dấu
m |
– ∞ – 4 0 + ∞ |
f(m) |
– 0 + 0 – |
Từ bản xét dấu ta có để – m2 – 4m < 0 thì m < – 4 hoặc m > 0.
Vậy với m < – 4 hoặc m > 0 thì (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ.
Câu 13:
22/07/2024Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]
Đáp án đúng là: C
Ta có: a = 1 > 0. Do đó, x2 – (2m + 2)x + m2 + 2m < 0 mọi x thuộc đoạn [0; 1]
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{x_1} < 0 < 1 < {x_2}\end{array} \right. \Leftrightarrow \)\(\left\{ \begin{array}{l}{\left[ { - \left( {m + 1} \right)} \right]^2} - \left( {{m^2} + 2m} \right) > 0\\af\left( 0 \right) < 0\\af\left( 1 \right) < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\{m^2} + 2m < 0\\{m^2} - 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2 < m < 0\\ - 1 < m < 1\end{array} \right.\)\( \Leftrightarrow \) –1 < m < 0.
Vậy với –1 < m < 0 thì x2 – (2m + 2)x + m2 + 2m < 0 mọi x thuộc đoạn [0; 1].
Câu 14:
18/07/2024Cho phương trình x2 – 2x – m = 0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm thỏa mãn x1 < x2 < 2.
Đáp án đúng là: C
Phương trình có hai nghiệm phân biệt ∆’ > 0 \( \Leftrightarrow \) (– 1)2 + m > 0 \( \Leftrightarrow \) m > – 1.
Để phương trình có hai nghiệm thỏa mãn x1 < x2 < 2.
\( \Leftrightarrow \left\{ \begin{array}{l}{x_1} - 2 + {x_2} - 2 < 0\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} - 4 < 0\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 - 4 < 0\\ - m - 2.2 + 4 > 0\end{array} \right.\)
\( \Leftrightarrow \) m < 0.
Kết hợp với điều kiện ta được: – 1 < m < 0.
Câu 15:
21/07/2024Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Đáp án đúng là: A
Đặt f(x) = mx2 – (2m – 1)x + m + 1.
Ta có f(x) < 0 vô nghiệm \( \Leftrightarrow f\left( x \right) \ge 0\,\,\forall x \in \mathbb{R}\) \( \Leftrightarrow \) f(x) ≥ 0 với mọi x \( \in \) ℝ
Xét m = 0 khi đó f(x) = x + 1 nên m = 0 không thoả mãn.
Xét m ≠ 0\( \Leftrightarrow \) f(x) ≥ 0 với mọi x \( \in \) ℝ \( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = - 8m + 1 \le 0\end{array} \right.\)\( \Leftrightarrow m \ge \frac{1}{8}\).
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 2. Giải bất phương trình bậc hai một ẩn có đáp án (311 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 2. Giải phương trình bậc hai một ẩn (Phần 2) có đáp án (463 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 CTST Bài tập cuối chương 7 (Phần 2) có đáp án (651 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1. Dấu của tam thức bậc hai (Phần 2) có đáp án (613 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 3. Phương trình quy về phương trình bậc hai (Phần 2) có đáp án (367 lượt thi)
- Trắc nghiệm Toán 10 Bài 1. Dấu của tam thức bậc hai có đáp án (273 lượt thi)
- Trắc nghiệm Toán 10 Bài tập cuối chương 7 có đáp án (206 lượt thi)
- Trắc nghiệm Toán 10 Bài 3. Phương trình quy về phương trình bậc hai có đáp án (179 lượt thi)