Câu hỏi:

22/11/2024 475

Biểu thức L = y – x, với x và y thỏa mãn hệ bất phương trình 2x+3y60x02x3y10 , đạt giá trị lớn nhất là a và đạt giá trị nhỏ nhất là b. Hãy chọn kết quả đúng trong các kết quả sau:


A. a=258 b = - 2;


B. a = 2 b=1112 ;

Đáp án chính xác

C. a = 3 b = 0;

D. a = 3 và b=98 .

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

* Lời giải:

Ta biểu diễn miền ngiệm của hệ bất phương trình 2x+3y60x02x3y10  trên hệ trục tọa độ

Vẽ đường thẳng d1: 2x + 3y – 6 = 0, đường thẳng d1 đi qua hai điểm (0; 2) và (3; 0)

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 – 6 = – 6 < 0 thoả mãn bất phương trình 2x + 3y – 6 ≤ 0. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D1 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d1 và chứa gốc tọa độ O (kể cả bờ).

Vẽ đường thẳng d2: 2x – 3y – 1 = 0, đường thẳng d2 đi qua hai điểm 0;13 12;0 .

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 – 1 = – 1 < 0 thoả mãn bất phương trình 2x – 3y – 1 ≤ 0. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D2 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d2 và chứa gốc tọa độ O (kể cả bờ).

x 0 có miền nghiệm là nửa mặt phẳng nằm bên phải trục tung (kể cả trục tung).

Miền nghiệm là phần không bị gạch như hình vẽ.

Biểu thức L = y – x, với x và y thỏa mãn hệ bất phương trình 2x+3y-6 bé hơn bằng 0, y lớn hơn bằng 0 (ảnh 1)

Miền nghiệm là tam giác ABC với A74;56  B(0; 2);  C0;13

Nhận thấy biệt thức L = y – x chỉ đạt giá trị lớn nhất và nhỏ nhất tại các điểm A, B, C.

Ta có:

L = y – x suy ra L74;56=5674=1112

L = y – x suy ra L(0; 2) = 2 – 0 = 2;

L = y – x suy ra L0;13=130=13 

Vậy a = 2 và b =  1112

* Phương pháp giải:

Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn

• Miền nghiệm của hệ bất phương trình là giao của các miền nghiệm của các bất phương trình trong hệ.

• Để biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn, ta làm như sau:

+ Trong cùng mặt phẳng toạ độ, biểu diễn miền nghiệm của mỗi bất phương trình trong hệ bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.

+ Phần không bị gạch là miền nghiệm cần tìm.

*Một số lý thuyết và dạng bài tập về hệ bất phương trình bậc nhất hai ẩn:

1. Hệ bất phương trình bậc nhất hai ẩn

• Hệ bất phương trình bậc nhất hai ẩn x, y là một hệ gồm một số bất phương trình bậc nhất hai ẩn x, y. Mỗi nghiệm chung của các bất phương trình trong hệ được gọi là một nghiệm của hệ bất phương trình đó.

Ví dụ: Cho hệ bất phương trình sau: 2x+y>0    (1)x3y<6    (2).

Cặp số (x ; y) nào trong các cặp (3; 1), (– 1; 0), (4; – 1) là nghiệm của hệ bất phương trình trên?

2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn

• Miền nghiệm của hệ bất phương trình là giao của các miền nghiệm của các bất phương trình trong hệ.

• Để biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn, ta làm như sau:

+ Trong cùng mặt phẳng toạ độ, biểu diễn miền nghiệm của mỗi bất phương trình trong hệ bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.

+ Phần không bị gạch là miền nghiệm cần tìm.

Xem thêm các bài viết liên quan hay, chi tiết

Giải Toán 10 Bài 4 (Kết nối tri thức): Hệ bất phương trình bậc nhất hai ẩn

Trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn có đáp án – Toán lớp 10 

TOP 20 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn (Chân trời sáng tạo 2024) có đáp án - Toán 10 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giá trị lớn nhất của biểu thức F(x; y) = 2x + y trên miền xác định bởi hệ: y2x22yx4x+y5  là:

Xem đáp án » 23/07/2024 918

Câu 2:

Giá trị lớn nhất của biểu thức F(x; y) = 2x – y, với điều kiện 0y4x0xy10x+2y100  thuộc vào khoảng nào sau đây?

Xem đáp án » 21/07/2024 692

Câu 3:

Giá trị lớn của biết thức F(x; y) = x – 2y với điều kiện 0y5x0x+y20xy20  

Xem đáp án » 14/07/2024 183

Câu 4:

Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5 m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900 m vải và số giờ công không vượt quá 6 000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Phân xưởng cần may bao nhiêu áo vest và quần âu để thu được tiền lãi cao nhất (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp).

Xem đáp án » 23/07/2024 129

Câu hỏi mới nhất

Xem thêm »
Xem thêm »