Câu hỏi:
16/07/2024 558Bác Nam muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 42 cm thành một rãnh dẫn nước bằng cách chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông sao cho độ cao hai thành rãnh bằng nhau. Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn hơn hoặc bằng 160 cm2. Bác Nam cần làm rãnh nước có độ cao ít nhất là bao nhiêu xăng – ti – mét để đảm bảo kĩ thuật?
Trả lời:
Chia tấm tôn đó thành ba phần theo các kích thước x (cm), 42 – x (cm) và x (cm).
Khi gấp hai bên lại ta được rãnh dẫn nước có mặt cắt ngang có kích thước là x (cm) và 42 – x (cm).
Diện tích của mặt cắt ngang là x.(42 – x) = – x2 + 42x (cm2).
Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn hơn hoặc bằng 160 cm2 nên ta có:
– x2 + 42x ≥ 160
⇔ – x2 + 42x – 160 ≥ 0
Xét tam thức bậc hai f(x) = – x2 + 42x – 160 có a = – 1, b = 42, c = – 160 và ∆ = 422 – 4.(– 1).(– 160) = 1124 > 0.
Suy ra f(x) có hai nghiệm x1 = và x2 = .
Áp dụng định lí dấu của tam thức bậc hai ta được:
f(x) ≥ 0 khi 2,12 ≤ x ≤ 18,88
Vậy rãnh nước phải có độ cao ít nhất khoảng 2,12 cm.
Chia tấm tôn đó thành ba phần theo các kích thước x (cm), 42 – x (cm) và x (cm).
Khi gấp hai bên lại ta được rãnh dẫn nước có mặt cắt ngang có kích thước là x (cm) và 42 – x (cm).
Diện tích của mặt cắt ngang là x.(42 – x) = – x2 + 42x (cm2).
Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn hơn hoặc bằng 160 cm2 nên ta có:
– x2 + 42x ≥ 160
⇔ – x2 + 42x – 160 ≥ 0
Xét tam thức bậc hai f(x) = – x2 + 42x – 160 có a = – 1, b = 42, c = – 160 và ∆ = 422 – 4.(– 1).(– 160) = 1124 > 0.
Suy ra f(x) có hai nghiệm x1 = và x2 = .
Áp dụng định lí dấu của tam thức bậc hai ta được:
f(x) ≥ 0 khi 2,12 ≤ x ≤ 18,88
Vậy rãnh nước phải có độ cao ít nhất khoảng 2,12 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
Cho hai vectơ đều khác vectơ Tích vô hướng của và được xác định bởi công thức
Cho hai vectơ đều khác vectơ Tích vô hướng của và được xác định bởi công thức
Câu 7:
Gọi S là tập nghiệm của bất phương trình – x2 + 2x – 4 ≤ 0. Khi đó S bằng:
Gọi S là tập nghiệm của bất phương trình – x2 + 2x – 4 ≤ 0. Khi đó S bằng:
Câu 8:
Cho tam giác ABC vuông tại A, AB = 2, . Độ dài của vectơ gần với giá trị nào nhất sau đây:.
Cho tam giác ABC vuông tại A, AB = 2, . Độ dài của vectơ gần với giá trị nào nhất sau đây:.
Câu 9:
Cho tứ giác ABC có AB = 5, AC = 4, . Khi đó độ dài BC khoảng:
A. 42,4;
B. 6,5;
C. 3;
D. 3,2.
Cho tứ giác ABC có AB = 5, AC = 4, . Khi đó độ dài BC khoảng:
A. 42,4;
B. 6,5;
C. 3;
D. 3,2.
Câu 10:
b) Tìm các giá trị của tham số m để phương trình có một nghiệm duy nhất.
b) Tìm các giá trị của tham số m để phương trình có một nghiệm duy nhất.
Câu 11:
Hai điểm A, B nằm trên đồ thị hàm số y = |x| và đối xứng với nhau qua trục tung. Biết , diện tích S của tam giác OAB là (biết O là gốc tọa độ, tham khảo đồ thị hàm số y = |x| ở hình vẽ bên).
Hai điểm A, B nằm trên đồ thị hàm số y = |x| và đối xứng với nhau qua trục tung. Biết , diện tích S của tam giác OAB là (biết O là gốc tọa độ, tham khảo đồ thị hàm số y = |x| ở hình vẽ bên).
Câu 14:
Cho parabol (P):
Hình vẽ trên là đồ thị của hàm số bậc hai nào dưới đây: