Câu hỏi:

17/07/2024 211

∆ABC vuông cân tại A và nội tiếp đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp ∆ABC. Khi đó tỉ số \(\frac{R}{r}\) bằng:

A. \(1 + \sqrt 2 \);

Đáp án chính xác

B. \(\frac{{2 + \sqrt 2 }}{2}\);

C. \(\frac{{\sqrt 2 - 1}}{2}\);

D. \(\frac{{1 + \sqrt 2 }}{2}\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Giả sử AB = AC = a.

∆ABC vuông cân tại A nên BC2 = AB2 + AC2 (Định lí Pythagore)

Do đó BC2 = a2 + a2 = 2a2.

Suy ra \(BC = a\sqrt 2 \).

Diện tích ∆ABC là: \(S = \frac{1}{2}.AB.AC = \frac{{{a^2}}}{2}\) (đơn vị diện tích)

Ta có \(S = \frac{{AB.AC.BC}}{{4R}}\)

\( \Leftrightarrow R = \frac{{AB.AC.BC}}{{4S}} = \frac{{a.a.a\sqrt 2 }}{{4.\frac{{{a^2}}}{2}}} = \frac{{a\sqrt 2 }}{2}\).

Nửa chu vi của ∆ABC là:

\(p = \frac{{AB + AC + BC}}{2} = \frac{{a + a + a\sqrt 2 }}{2} = \frac{{a\left( {2 + \sqrt 2 } \right)}}{2}\).

Ta có S = p.r

\( \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}}}{2}:\frac{{a\left( {2 + \sqrt 2 } \right)}}{2} = \frac{{{a^2}}}{2}.\frac{2}{{a\left( {2 + \sqrt 2 } \right)}} = \frac{a}{{2 + \sqrt 2 }}\).

Vì vậy tỉ số \(\frac{R}{r} = \frac{{a\sqrt 2 }}{2}:\frac{a}{{2 + \sqrt 2 }} = \frac{{a\sqrt 2 }}{2}.\frac{{2 + \sqrt 2 }}{a} = 1 + \sqrt 2 \).

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

Xem đáp án » 21/07/2024 104

Câu 2:

Hai tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 120°. Tàu 1 chạy với vận tốc 30 hải lí/giờ. Tàu 2 chạy với vận tốc 25 hải lí/giờ. Sau hai giờ, hai tàu cách nhau khoảng:

Xem đáp án » 15/07/2024 104

Câu 3:

∆ABC có \(AB = \frac{{\sqrt 6 - \sqrt 2 }}{2}\), \(BC = \sqrt 3 \), \(CA = \sqrt 2 \). Gọi D là chân đường phân giác trong của \(\widehat A\). Khi đó số đo của \(\widehat {ADB}\) bằng:

Xem đáp án » 21/07/2024 96

Câu 4:

Cho ∆ABC. Nếu tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của \(\widehat A\) thì khi đó diện tích của tam giác mới S’ được tạo nên bằng:

Xem đáp án » 14/07/2024 84

Câu hỏi mới nhất

Xem thêm »
Xem thêm »