Câu hỏi:
17/07/2024 217∆ABC vuông cân tại A và nội tiếp đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp ∆ABC. Khi đó tỉ số \(\frac{R}{r}\) bằng:
A. \(1 + \sqrt 2 \);
B. \(\frac{{2 + \sqrt 2 }}{2}\);
C. \(\frac{{\sqrt 2 - 1}}{2}\);
D. \(\frac{{1 + \sqrt 2 }}{2}\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Giả sử AB = AC = a.
∆ABC vuông cân tại A nên BC2 = AB2 + AC2 (Định lí Pythagore)
Do đó BC2 = a2 + a2 = 2a2.
Suy ra \(BC = a\sqrt 2 \).
Diện tích ∆ABC là: \(S = \frac{1}{2}.AB.AC = \frac{{{a^2}}}{2}\) (đơn vị diện tích)
Ta có \(S = \frac{{AB.AC.BC}}{{4R}}\)
\( \Leftrightarrow R = \frac{{AB.AC.BC}}{{4S}} = \frac{{a.a.a\sqrt 2 }}{{4.\frac{{{a^2}}}{2}}} = \frac{{a\sqrt 2 }}{2}\).
Nửa chu vi của ∆ABC là:
\(p = \frac{{AB + AC + BC}}{2} = \frac{{a + a + a\sqrt 2 }}{2} = \frac{{a\left( {2 + \sqrt 2 } \right)}}{2}\).
Ta có S = p.r
\( \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}}}{2}:\frac{{a\left( {2 + \sqrt 2 } \right)}}{2} = \frac{{{a^2}}}{2}.\frac{2}{{a\left( {2 + \sqrt 2 } \right)}} = \frac{a}{{2 + \sqrt 2 }}\).
Vì vậy tỉ số \(\frac{R}{r} = \frac{{a\sqrt 2 }}{2}:\frac{a}{{2 + \sqrt 2 }} = \frac{{a\sqrt 2 }}{2}.\frac{{2 + \sqrt 2 }}{a} = 1 + \sqrt 2 \).
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Giả sử AB = AC = a.
∆ABC vuông cân tại A nên BC2 = AB2 + AC2 (Định lí Pythagore)
Do đó BC2 = a2 + a2 = 2a2.
Suy ra \(BC = a\sqrt 2 \).
Diện tích ∆ABC là: \(S = \frac{1}{2}.AB.AC = \frac{{{a^2}}}{2}\) (đơn vị diện tích)
Ta có \(S = \frac{{AB.AC.BC}}{{4R}}\)
\( \Leftrightarrow R = \frac{{AB.AC.BC}}{{4S}} = \frac{{a.a.a\sqrt 2 }}{{4.\frac{{{a^2}}}{2}}} = \frac{{a\sqrt 2 }}{2}\).
Nửa chu vi của ∆ABC là:
\(p = \frac{{AB + AC + BC}}{2} = \frac{{a + a + a\sqrt 2 }}{2} = \frac{{a\left( {2 + \sqrt 2 } \right)}}{2}\).
Ta có S = p.r
\( \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}}}{2}:\frac{{a\left( {2 + \sqrt 2 } \right)}}{2} = \frac{{{a^2}}}{2}.\frac{2}{{a\left( {2 + \sqrt 2 } \right)}} = \frac{a}{{2 + \sqrt 2 }}\).
Vì vậy tỉ số \(\frac{R}{r} = \frac{{a\sqrt 2 }}{2}:\frac{a}{{2 + \sqrt 2 }} = \frac{{a\sqrt 2 }}{2}.\frac{{2 + \sqrt 2 }}{a} = 1 + \sqrt 2 \).
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 120°. Tàu 1 chạy với vận tốc 30 hải lí/giờ. Tàu 2 chạy với vận tốc 25 hải lí/giờ. Sau hai giờ, hai tàu cách nhau khoảng:
Câu 2:
Cho ∆ABC và các khẳng định sau:
(I) b2 – c2 = a(b.cosC – c.cosB);
(II) (b + c)sinA = a(sinB + sinC);
(III) ha = 2R.sinB.sinC;
(IV) S = R.r.(sinA + sinB + sin C);
Số khẳng định đúng là:
Câu 3:
∆ABC có \(AB = \frac{{\sqrt 6 - \sqrt 2 }}{2}\), \(BC = \sqrt 3 \), \(CA = \sqrt 2 \). Gọi D là chân đường phân giác trong của \(\widehat A\). Khi đó số đo của \(\widehat {ADB}\) bằng:
Câu 4:
Cho ∆ABC. Nếu tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của \(\widehat A\) thì khi đó diện tích của tam giác mới S’ được tạo nên bằng: