Trong Ví dụ 8, chứng minh rằng hai hình OMGE và COEN đồng dạng với nhau

Lời giải Luyện tập 4 trang 32 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 279 03/07/2023


Giải Chuyên đề Toán 11 Cánh diều Bài 2: Phép đồng dạng

Luyện tập 4 trang 32 chuyên đề Toán lớp 11: Trong Ví dụ 8, chứng minh rằng hai hình OMGE và COEN đồng dạng với nhau.

Luyện tập 4 trang 32 chuyên đề Toán lớp 11 Cánh diều | Giải Chuyên đề Toán 11

Lời giải:

Luyện tập 4 trang 32 chuyên đề Toán lớp 11 Cánh diều | Giải Chuyên đề Toán 11

+) Vì O là giao hai đường chéo của hình vuông ABCD nên AC và BD vuông góc với nhau tại O và O là trung điểm của AC và BD, lại có AC = BD nên suy ra OA = OB = OC = OD.

Tam giác OBC cân tại O (OB = OC) có ON là đường trung tuyến nên ON là đường phân giác, suy ra CON^=BON^=BOC^2=90°2=45°.

Tương tự ta chứng minh được BOM^=45°  hay EOM^=45° .

Trên tia ON, lấy điểm C' sao cho OC' = OC. Trên tia OB, lấy điểm N' sao cho ON' = ON. Trên tia OM, lấy điểm E' sao cho OE' = OE.

Lại có COC'^=CON^=45° , NON'^=BON^=45° và NON'^=BON^=45°.

Mà phép quay với góc quay 45° có chiều quay ngược chiều kim đồng hồ.

Do đó, ta có phép quay tâm O với góc quay 45° biến các điểm C, O, E, N tương ứng thành các điểm C'¸O, E', N' nên phép quay tâm O với góc quay 45° biến hình COEN thành hình C'OE'N' (1).

+) Giả sử hình vuông ABCD có cạnh là a.

Khi đó BD = AC = a2, OB = OC = a22, ON = AB2=a2 .

Suy ra OE=OB2=a24, OC' = OC = a22, ON' = ON = a2.

Suy ra OEON'=22,ONOC'=22, do đó OEON'=ONOC'=22.

Qua E, kẻ đường thẳng song song với E'N' cắt OM tại F, suy ra EF // E'N' nên theo định lí Thales trong tam giác OE'N' ta có OFOE'=OEON'=22.  

Từ đó suy ra ONOC'=OEON'=OFOE'=22 nên ON=22OC'OE=22ON'OF=22OE' .

Như vậy, ta có phép vị tự tâm O với tỉ số 22biến các điểm C'¸O, E', N' tương ứng thành các điểm N, O, F, E hay phép vị tự tâm O với tỉ số 22 biến hình C'OE'N' thành hình NOFE (2).

+)  Tam giác NOB vuông cân tại N có NE là đường trung tuyến nên NE cũng là đường cao và NE = OB2 = OE, suy ra NEO^=90°  và EN = EO.

Tương tự, ta chứng minh được MEO^=90°và EM = EO.

Ta chứng minh được EFMG là hình vuông nên FEG^=90° và EF = EG.

Mà phép quay với góc quay – 90° có chiều quay cùng chiều kim đồng hồ.

Do đó, ta có phép quay tâm E với góc quay – 90° biến các điểm N, O, F, E tương ứng thành các điểm O, M, G, E hay phép quay tâm E với góc quay – 90° biến hình NOFE thành hình OMGE (3).

Từ (1), (2) và (3) suy ra hai hình OMGE và COEN đồng dạng với nhau.

1 279 03/07/2023


Xem thêm các chương trình khác: