Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A

Lời giải Bài 8 trang 33 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 472 03/07/2023


Giải Chuyên đề Toán 11 Cánh diều Bài 2: Phép đồng dạng

Bài 8 trang 33 Chuyên đề Toán 11: Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Lời giải:

Chú ý: Phép vị tự biến đường tròn có bán kính R thành đường tròn có bán kính R' = |k|R và có tâm là ảnh của tâm.

Hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A và đường tròn tâm O2 có bán kính gấp 2 lần đường tròn tâm O1.

Bài 8 trang 33 Chuyên đề học tập Toán 11 Cánh diều

- Trên đường tròn (O1; R) lấy điểm B bất kì.

- Trên đường tròn (O2; 2R) dựng đường kính CD // O1­­B.

- BC cắt O1O2 tại E.

+) Ta có: O1B // CO2 nên theo định lí Thales có EO2EO1=O2CO1B=2RR=2.

Suy ra EO2=2EO1 nên ta có phép vị tự tâm E, tỉ số 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm E, tỉ số 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

+) Nối B với D, ta chứng minh được BD cắt O1O2 tại điểm tiếp xúc A của hai đường tròn.

Ta có: AO2AO1=2RR=2và A nằm giữa hai điểm O1 và O2 nên AO2=2AO1 . Do đó, ta có phép vị tự tâm A, tỉ số – 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm A, tỉ số – 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Vậy có 2 phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).

1 472 03/07/2023


Xem thêm các chương trình khác: