Sách bài tập Toán 12 Bài 4 (Kết nối tri thức): Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Với giải sách bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 12 Bài 4.
Giải SBT Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số - Kết nối tri thức
Bài 1.31 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = x3 – 6x2 + 9x;
b) y = x3 + 3x2 + 6x + 4.
Lời giải:
a) y = x3 – 6x2 + 9x
1. Tập xác định: D = ℝ.
2. Sự biến thiên
Giới hạn tại vô cực:
Ta có: y' = 3x2 – 12x + 9
y' = 0 ⇔ 3x2 – 12x + 9 = 0 ⇔ x = 1 hoặc x = 3.
Ta có bảng biến thiên như sau:
Hàm số đồng biến trên các khoảng (−∞; 1) và (3; +∞).
Hàm số nghịch biến trên khoảng (1; 3).
Hàm số đạt cực đại tại x = 1 với yCĐ = 4.
Hàm số đạt cực tiểu tại x = 3 với yCT = 0.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; 0).
Đồ thị hàm số cắt trục hoành tại điểm (0; 0) và (3; 0).
Đồ thị nhận điểm (2; 2) làm tâm đối xứng.
Ta có đồ thị hàm số như sau:
b) y = x3 + 3x2 + 6x + 4
1. Tập xác định: D = ℝ.
2. Sự biến thiên
Giới hạn tại vô cực:
Ta có: y' = 3x2 + 6x + 6 = 3(x2 + 2x + 1) + 3 = 3(x + 1)2 + 3 > 0 với mọi x.
Ta có bảng biến thiên như sau:
Hàm số đồng biến trên ℝ.
Hàm số không có cực trị.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; 4).
Đồ thị hàm số cắt trục hoành tại điểm (−1; 0).
Đồ thị hàm số có tâm đối xứng là điểm (−1; 0).
Đồ thị hàm số như sau:
Bài 1.32 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) ;
b)
Lời giải:
a)
1. Tập xác định: D = ℝ\{−2}.
2. Sự biến thiên
Giới hạn tại vô cực:
Do đó, đường thẳng y = 3 là đường tiệm cận ngang của đồ thị hàm số.
; .
Do đó, đường thẳng x = −2 là đường tiệm cận đứng của đồ thị hàm số.
Ta có: y' = > 0, với mọi x ∈ D.
Ta có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng (−∞; −2) và (−2; +∞).
2. Đồ thị hàm số
Đồ thị cắt trục tung tại điểm .
Đồ thị cắt trục hoành tại điểm .
Đồ thị có tâm đối xứng là điểm (−2; 3).
Hai trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
b)
1. Tập xác định: D = ℝ\{1}.
2. Sự biến thiên
Giới hạn tại vô cực:
Do đó, đường thẳng y = 2 là đường tiệm cận ngang của đồ thị hàm số.
; .
Do đó, đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số.
Ta có: y' = > 0, với mọi x ∈ D.
Ta có bảng biến thiên như sau:
Hàm số nghịch biến trên các khoảng (−∞; 1) và (1; +∞).
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; 1).
Đồ thị hàm số cắt trục hoành tại điểm .
Đồ thị hàm số có tâm đối xứng là điểm (1; 2).
Hai trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Bài 1.33 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a)
b)
Lời giải:
a)
1. Tập xác định: D = ℝ\{2}.
2. Sự biến thiên
Ta có: y = x – 2 + .
Giới hạn tại vô cực:
.
Do đó, đồ thị hàm số không có tiệm cận ngang.
; .
Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
Do đó, đường thẳng y = x – 2 là đường tiệm cận xiên của đồ thị hàm số.
Ta có: y' =
y' = 0 ⇔ = 0 ⇔ x = 0 hoặc x = 4.
Hàm số đồng biến trên các khoảng (−∞; 0) và (4; +∞).
Hàm số nghịch biến trên các khoảng (0; 2) và (2; 4).
Hàm số đạt cực đại tại x = 0 và yCĐ = −4.
Hàm số đạt cực tiểu tại x = 4 và yCT = 4.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; −4).
Đồ thị hàm số không cắt trục hoành.
Tâm đối xứng của đồ thị hàm số là điểm (2; 0).
Hai trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
b)
1. Tập xác định: D = ℝ\{−1}.
2. Sự biến thiên
Ta có: y = 2x + 1 − .
Giới hạn tại vô cực:
.
Do đó, đồ thị hàm số không có tiệm cận ngang.
; .
Do đó, đường thẳng x = −1 là tiệm cận đứng của đồ thị hàm số.
Do đó, đường thẳng y = 2x + 1 là đường tiệm cận xiên của đồ thị hàm số.
Ta có: y' = = > 0, với mọi x ≠ −1.
Bảng biến thiên của hàm số như sau:
Hàm số đồng biến trên các khoảng (−∞; −1) và (−1; +∞).
Hàm số không có cực trị.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; −5).
Đồ thị hàm số cách trục hoành tại điểm và (1; 0).
Đồ thị hàm số có tâm đối xứng là điểm (−1; −1).
Hai trục đối xứng của đồ thị là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
Bài 1.34 trang 25 SBT Toán 12 Tập 1: Cho hàm số y = f(x) có đạo hàm f'(x) xác định trên ℝ và f'(x) có đồ thị như hình vẽ sau:
Tìm các khoảng đồng biến, khoảng nghịch biến và các điểm cực trị của hàm số y = f(x).
Lời giải:
Từ đồ thị hàm số f'(x), ta có bảng biến thiên của hàm số f(x) như sau:
Do đó, hàm số f(x) đồng biến trên các khoảng (−∞; −1) và (2; +∞) và hàm số nghịch biến trên khoảng (−1; 2).
Hàm số đạt cực đại tại x = −1 và đạt cực tiểu tại x = 2.
Bài 1.35 trang 25 SBT Toán 12 Tập 1: Gia tốc a(t) của một vật chuyển động, t tính theo giây, từ giây thứ nhất đến giây thứ 5 là một hàm liên tục có đồ thị như hình sau:
a) Lập bảng biến thiên của hàm vận tốc y = v(t) của vật, với t ∈ [1; 5].
b) Tại thời điểm nào vật chuyển động với vận tốc lớn nhất?
Lời giải:
a) Ta có: a(t) = v'(t).
Do đó, từ đồ thị hàm số a(t), t ∈ [1; 5], ta có bảng biến thiên hàm vận tốc v(t) như sau:
b) Từ bảng biến thiên, ta thấy vật chuyển động với vận tốc lớn nhất tại giây thứ ba (t = 3).
Bài 1.36 trang 26 SBT Toán 12 Tập 1: Một mẫu giấy in hình chữ nhật được thiết kế với vùng in có diện tích 300 cm2, lề trái và lề phải là 2 cm, lề trên và lề dưới là 3 cm. Gọi x (cm) là chiều rộng của tờ giấy.
a) Tính diện tích của tờ giấy theo x.
b) Kí hiệu diện tích tờ giấy là S(x). Khảo sát sự biến thiên của hàm số y = S(x).
c) Tìm kích thước của tờ giấy sao cho nguyên liệu giấy được sử dụng là ít nhất.
Lời giải:
Theo đề, ta có: x (cm) là chiều rộng tờ giấy.
Gọi y (cm) là chiều dài tờ giấy.
Theo giả thiết, ta có: chiều rộng vùng in là: x – 2.2 = x – 4 (cm).
Chiều dài cùng in là: y – 3.2 = y – 6 (cm).
Diện tích vùng in là: (x – 4)(y – 6) = 300.
Suy ra y = .
a) Diện tích của tờ giấy được thiết kế là:
S(x) = xy = .
b) Khảo sát sự biến thiên của hàm số S(x):
1. Tập xác định: D = (4; +∞).
2. Sự biến thiên
Giới hạn vô cực và giới hạn tại vô cực: ,
Ta có: S(x) = 6x + 300 + .
S'(x) = .
S'(x) = 0 ⇔ x0 = x = 4 + 10 .
Ta có bảng biến thiên như sau:
c) Kích thước của tờ giấy để nguyên liệu sử dụng ít nhất là khi chiều rộng x = 4 + 10 .
Khi đó chiều dài y = 6 + = 6 + = 6 +15 .
Vậy kích thước của tờ giấy để nguyên liệu sử dụng ít nhất là chiều rộng bằng 4 + 10 cm, chiều dài bằng 6 + 15 cm.
Bài 1.37 trang 26 SBT Toán 12 Tập 1: Giả sử chi phí để sản xuất x sản phẩm của một nhà máy được cho bởi C(x) = 0,2x2 + 10x + 5(triệu đồng). Khi đó, chi phí trung bình để sản xuất một đơn vị sản phẩm là
a) Khảo sát sự biến thiên của hàm số y = f(x).
b) Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?
Lời giải:
a) Ta có: = 0,2x + 10 + với x ≥ 1.
f'(x) = 0,2 –
f'(x) = 0 ⇔ 0,2 – = 0 ⇔ x = 5 (do x ≥ 1).
Giới hạn tại vô cực: .
Ta có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng (5; +∞), nghịch biến trên khoảng (1; 5).
Hàm số đạt cực đại tại x = 5 với fCT = 12.
Bài 1.38 trang 26 SBT Toán 12 Tập 1: Cho điểm A(3;2 ) trên mặt phẳng tọa độ. Một đường thẳng đi qua A cắt trục hoành tại B, cắt trục tung tại C tạo thành một tam giác OBC nằm trong góc phần tư thứ nhấ, với O là gốc tọa độ.
a) Biết hoành độ điểm B là x = t với t > 3. Tính diện tích tam giác OBC theo t. Kí hiệu diện tích này là S(t).
b) Khảo sát sự biến thiên của hàm số S(t).
c) Tìm vị trí điểm B để diện tích tam giác OBC là nhỏ nhất.
Lời giải:
a) Ta có: B(t; 0).
Suy ra = (t – 3; −2).
Phương trình đường thẳng AB là: hay y = 2 − .
Suy ra điểm C có tung độ yC = 2 + .
Vậy C .
Ta có: OB = = t
OC = .
Diện tích tam giác OBC là S(t) = .OB.OC = .t. = .
b) Khảo sát sự biến thiên của hàm số S(t) = .
1. Tập xác định: D = (3; +∞).
2. Sự biến thiên
Giới hạn tại vô cực, giới hạn vô cực:
.
Ta có: S(t) = t + 3 + .
S'(t) = 1 −
S'(t) = 0 ⇔ 1 − = 0 ⇔ t = 6 (do t > 3).
Ta có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại t = 6 và yCT = 12.
c) Dựa vào bảng biến thiên ở phần b, ta thấy để diện tích tam giác OBC có diện tích nhỏ nhất thì B(6; 0).
Bài 1.39 trang 26 SBT Toán 12 Tập 1: Một quần thể cá được nuôi trong một hồ nhân tạo lúc ban đầu có 80 000 con. Sau t năm, số lượng quần thể cá nói trên được xác định bởi
N(t) = (nghìn con).
a) Khảo sát sự biến thiên của hàm số y = N(t).
b) Số lượng tối đa có thể có của quần thể cá là bao nhiêu?
Lời giải:
a) Khảo sát sự biến thiên của hàm số y = N(t).
1. Tập xác định: [0; +∞).
2. Sự biến thiên
Ta có: N(t) =
N'(t) = với mọi t ≥ 0.
Hàm số đồng biến trên khoảng (0; +∞).
Hàm số không có cực trị.
Giới hạn tại vô cực: = 1200.
Bảng biến thiên:
b) Số lượng tối đa có thể có của quần thể cá là 1 200 000 con.
Bài 1.40 trang 27 SBT Toán 12 Tập 1: Một khối bưu kiện hình hộp chữ nhật được quy định về kích cỡ như sau: tổng chiều dài và chu vi thiết diện ngang (hình vuông) là 240 cm.
Gọi x là độ dài cạnh của thiết diện ngang.
a) Tính thể tích của khối bưu kiện theo x.
b) Kí hiệu V(x) là thể tích của khối bưu kiện. Khảo sát sự biến thiên của hàm số y = V(x).
Lời giải:
a) Chu vi thiết diện ngang là: 4x (cm).
Chiều dài của khối bưu kiện là: 240 – 4x (cm).
Do đó, thể tích của khối bưu kiện là: V(x) = (240 – x)x2 (cm3).
b) Khảo sát sự biến thiên của hàm số y = V(x).
1. Tập xác định là: (0; 60).
2. Sự biến thiên:
Ta có: V'(x) = 480x – 12x2
V'(x) = 0 ⇔ x = 40 (do x > 0).
Hàm số đồng biến trên khoảng (0; 40), nghịch biến trên khoảng (40; 60).
Hàm số đạt cực đại tại x = 40 với VCĐ = 128 000 (cm3).
Ta có bảng biến thiên như sau:
Xem thêm Lời giải bài tập Toán 12 sách Kết nối tri thức hay, chi tiết khác:
Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
Xem thêm các chương trình khác:
- Soạn văn 12 Kết nối tri thức (hay nhất)
- Văn mẫu 12 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 12 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 12 - Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 12 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn 12 – Kết nối tri thức
- Bài tập Tiếng Anh 12 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 12 - Global success
- Trọn bộ Từ vựng Tiếng Anh 12 Global success đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh 12 Global success đầy đủ nhất
- Giải sbt Tiếng Anh 12 – Global Success
- Giải sgk Vật lí 12 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 12 – Kết nối tri thức
- Lý thuyết Vật lí 12 – Kết nối tri thức
- Giải sbt Vật lí 12 – Kết nối tri thức
- Giải sgk Hóa học 12 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa 12 – Kết nối tri thức
- Lý thuyết Hóa 12 – Kết nối tri thức
- Giải sbt Hóa 12 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 12 cả 3 sách (chương trình mới 2025)
- Giải sgk Sinh học 12 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 12 – Kết nối tri thức
- Lý thuyết Sinh học 12 – Kết nối tri thức
- Giải sbt Sinh học 12 – Kết nối tri thức
- Giải sgk Lịch sử 12 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 12 – Kết nối tri thức
- Giải sbt Lịch sử 12 – Kết nối tri thức
- Giải sgk Địa lí 12 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 12 – Kết nối tri thức
- Giải sbt Địa lí 12 – Kết nối tri thức
- Giải sgk Tin học 12 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 12 – Kết nối tri thức
- Giải sbt Tin học 12 – Kết nối tri thức
- Lý thuyết Tin học 12 - Kết nối tri thức
- Giải sgk Công nghệ 12 – Kết nối tri thức
- Giải sgk Kinh tế pháp luật 12 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 12 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng 12 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 12 – Kết nối tri thức