Trang chủ Lớp 8 Toán Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác (có đáp án)

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác (có đáp án)

Trắc nghiệm Toán 8 Bài 6: Trường hợp đồng dạng thứ hai của tam giác

  • 340 lượt thi

  • 19 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

23/07/2024

Để hai tam giác ABC và EDF đồng dạng thì số đo góc D trong hình vẽ dưới bằng:

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 2)

Xem đáp án

Đáp án: B

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 3)

Có: BABC=510=12,DEDF=36=12

Để hai tam giác đã cho đồng dạng thì góc ABC = EDF = 600.


Câu 2:

21/07/2024

Với AB // CD thì giá trị của x trong hình vẽ dưới đây là

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 4)

Xem đáp án

Đáp án: A

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 5)

Ta có:

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 6)


Câu 3:

22/07/2024

Cho hình vẽ dưới đây, tính giá trị của x?

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 7)

Xem đáp án

Đáp án: B

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 8)

Ta có:

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 9)


Câu 4:

20/07/2024

Cho tam giác ABC có AB = 8cm, AC = 16cm.

Điểm D thuộc cạnh AB sao cho BD = 2cm.

Điểm E thuộc cạnh AC sao cho CE = 13cm.

1. Chọn câu đúng.

Xem đáp án

Đáp án: C

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 10)

Ta có:

AEAB=38;ADAC=616=38

=>AEAB=ADAC

Xét ΔAED và ΔABC có A chung

 AEAB=ADAC (cmt)

Nên ΔAED ~ ΔABC (c.g.c)


Câu 5:

22/07/2024

Cho tam giác ABC có AB = 8cm, AC = 16cm.

Điểm D thuộc cạnh AB sao cho BD = 2cm.

Điểm E thuộc cạnh AC sao cho CE = 13cm.

2. Chọn câu sai.

Xem đáp án

Đáp án: B

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 11)

+ Xét ΔABE và ΔACD có A chung

 AEAD=ABAC(=12) nên

ΔABE ~ ΔACD (c - g - c)

suy ra góc ABE^=ACD^ (hai góc tương ứng)

 AEAD=BECD

 => AE.CD = AD.BE

+ ΔAED ~ ΔABC (cmt)

nên AEAB=ADAC

AE.AC = AB.AD

Nên A, C, D đúng, B sai.


Câu 8:

18/07/2024

Cho hình vẽ dưới đây, tính giá trị của x?

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 17)

Xem đáp án

Đáp án: B

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 18)

Ta có:

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 1)


Câu 10:

14/07/2024

Cho hình thang vuông ABCD (A = D = 900) có AB = 16cm, CD = 25cm, BD = 20cm.

1. Tam giác ABD đồng dạng với tam giác nào dưới đây?

Xem đáp án

Đáp án: A

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 22)

ΔABD và ΔBDC có góc ABD = BDC (hai góc ở vị trí so le trong bằng nhau do AB // CD);

 ABBD=BDDC (vì 1620=2025)

Do đó ΔABD ~ ΔBDC (c.g.c)


Câu 11:

22/07/2024

Cho hình thang vuông ABCD (A = D = 900) có AB = 16cm, CD = 25cm, BD = 20cm.

Độ dài cạnh BC là

Xem đáp án

Đáp án: C

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 23)

Vì ΔABD ~ ΔBDC (cmt) nên góc A = DBC.

Ta có A = 900 nên DBC = 900. Theo định lí Pytago, ta có

BC2 = CD2 - BD2 = 252 - 202 = 152.

Vậy BC = 15cm


Câu 14:

22/07/2024

Cho hình thang vuông ABCD (A = D = 900)

có AB = 1cm, CD = 4cm, BD = 2cm.

1.Chọn kết luận sai?

Xem đáp án

Đáp án: B

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 28)

ΔABD và ΔBDC có: ABD = BDC (hai góc ở vị trí so le trong bằng nhau do AB // CD)

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 29)

BAD = DBC = 900 nên BD  BC hay D đúng

Vậy chỉ có B sai.


Câu 15:

17/07/2024

Cho hình thang vuông ABCD (A = D = 900)

có AB = 1cm, CD = 4cm, BD = 2cm.

2. Độ dài cạn BC là (làm tròn đến hai chữ số thập phân)

Xem đáp án

Đáp án: D

Giải thích:

Lời giải

Tam giác BDC vuông tại B (theo câu trên), định lý Pitago ta có:

BD2 + BC2 = CD2

 22 + BC2 = 42

 BC2 = 12 => BC ≈ 3,46


Câu 16:

23/07/2024

Hãy chọn câu đúng. Nếu ΔABC và ΔDEF

có góc B = D; BABC=DEDF thì:

Xem đáp án

Đáp án: B

Giải thích:

Lời giải

ΔABC và ΔDEF có góc B = D;

BABC=DEDF thì ΔABC đồng dạng với ΔEDF


Câu 17:

14/07/2024

Cho ΔABC và ΔDEF có góc B = E; BABC=DEDF', chọn kết luận đúng

Xem đáp án

Đáp án: A

Giải thích:

Lời giải

ΔABC và ΔDEF có góc B = E; BABC=DEDF thì ΔABC đồng dạng với ΔDEF


Câu 18:

10/07/2024

Hãy chỉ ra cặp tam giác đồng dạng với nhau từ các tam giác sau đây:

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 30)

Xem đáp án

Đáp án: A

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 31)

Có: BABC=510=12; DEDF=36=12;

PQPR=44=1BABC=DEDF=12

Xét ΔABC và ΔEDF ta có:

BABC=DEDF (cmt) DEBA=DFBC

B = D = 600 (gt)

=> ΔABC ~ ΔEDF (c - g - c).


Câu 19:

15/07/2024

Cho ΔABC, trên cạnh AB lấy điểm D khác A, B. Qua D kẻ đường thẳng song song với BC cắt AC tại E. Chọn kết luận sai?

Xem đáp án

Đáp án: D

Giải thích:

Lời giải

Trắc nghiệm Trường hợp đồng dạng thứ hai của tam giác có đáp án - Toán 8 (ảnh 33)

Do DE // BC nên theo định lý Talet đảo ta có ADAB=AEAC nên C đúng.

Xét ΔADE và ΔABC ta có:

ADAB=AEAC (cmt)

A chung.

=> ΔADE ~ ΔABC (c - g - c) nên A đúng

=> ADE = ABC (cặp góc tương ứng) nên D sai.


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương