Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (Phần 2)
Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (Thông hiểu)
-
377 lượt thi
-
10 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
22/07/2024Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Hướng dẫn giải
Đáp án đúng là: A
Áp dụng định lí côsin cho DABC, ta có:
a2 = b2 + c2 – 2bc.cosA
= 322 + 452 – 2.32.45.cos87°
≈ 2898,3
Suy ra a ≈ \(\sqrt {2898,3} \) ≈ 53,8.
Theo định lí sin, ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)
Suy ra \(\sin B = \frac{{b.\sin A}}{a} \approx \frac{{32.\sin 87^\circ }}{{53,8}} \approx 0,6\).
Do đó \(\widehat B \approx 37^\circ \)
(\(\widehat B \approx 180^\circ - 37^\circ = 143^\circ \) không thỏa mãn do \(\widehat A + \widehat B \approx 87^\circ + 143^\circ = 230^\circ > 180^\circ )\)
∆ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {87^\circ + 37^\circ } \right) = 56^\circ \).
Vậy a ≈ 53,8, \(\widehat B \approx 37^\circ ,\,\,\widehat C \approx 56^\circ \).
Do đó ta chọn phương án A.
Câu 2:
12/07/2024Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Hướng dẫn giải
Đáp án đúng là: D
⦁ ∆ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {60^\circ + 40^\circ } \right) = 80^\circ \).
Do đó phương án A đúng.
⦁ Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Suy ra \(a = \frac{{c.\sin A}}{{\sin C}} = \frac{{14.\sin 60^\circ }}{{\sin 80^\circ }} \approx 12,3\).
Do đó phương án B đúng.
Ta có \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Suy ra \(b = \frac{{c.\sin B}}{{\sin C}} = \frac{{14.\sin 40^\circ }}{{\sin 80^\circ }} \approx 9,1\).
Do đó phương án C đúng, phương án D sai.
Vậy ta chọn phương án D.
Câu 3:
20/07/2024Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Hướng dẫn giải
Đáp án đúng là: D
Theo hệ quả của định lí côsin, ta có:
⦁ \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{2^2} + {{\left( {1 + \sqrt 3 } \right)}^2} - {{\left( {\sqrt 6 } \right)}^2}}}{{2.2.\left( {1 + \sqrt 3 } \right)}} = \frac{1}{2}\).
Suy ra \(\widehat A = 60^\circ \).
⦁ \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {{\left( {1 + \sqrt 3 } \right)}^2} - {2^2}}}{{2.\sqrt 6 .\left( {1 + \sqrt 3 } \right)}} = \frac{{\sqrt 2 }}{2}\).
Suy ra \(\widehat B = 45^\circ \).
⦁ \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {2^2} - {{\left( {1 + \sqrt 3 } \right)}^2}}}{{2.\sqrt 6 .2}} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Suy ra \(\widehat C = 75^\circ \).
Vậy ta chọn phương án D.
Câu 4:
12/07/2024Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Hướng dẫn giải
Đáp án đúng là: C
Theo hệ quả định lí sin, ta có:
⦁ BC = 2R.sinA = 2.2.sin120° = \(2\sqrt 3 \).
⦁ AC = 2R.sinB = 2.2.sin45° = \(2\sqrt 2 \).
Theo định lí côsin, ta có BC2 = AC2 + AB2 – 2.AC.AB.cosA
Suy ra \({\left( {2\sqrt 3 } \right)^2} = {\left( {2\sqrt 2 } \right)^2} + A{B^2} - 2.2\sqrt 2 .AB.\cos 120^\circ \)
Khi đó \(A{B^2} + 2\sqrt 2 .AB - 4 = 0\)
Vì vậy \(AB = \sqrt 6 - \sqrt 2 \) hoặc \(AB = - \sqrt 6 - \sqrt 2 \)
Vì AB là độ dài một cạnh của ∆ABC nên ta có AB > 0.
Do đó ta nhận \(AB = \sqrt 6 - \sqrt 2 \).
∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {120^\circ + 45^\circ } \right) = 15^\circ \).
Vậy ta chọn phương án C.
Câu 5:
21/07/2024Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
Hướng dẫn giải
Đáp án đúng là: B
⦁ Theo hệ quả định lí sin, ta có:
a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).
⦁ Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).
Suy ra hc = b.sinA
Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).
⦁ Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA
Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)
Khi đó c2 – 4c – 92 = 0
Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).
Vì c là độ dài một cạnh của ∆ABC nên c > 0.
Do đó ta nhận \(c = 2 + 4\sqrt 6 \).
Vậy ta chọn phương án B.
Câu 6:
22/07/2024Hướng dẫn giải
Đáp án đúng là: A
Theo định lí côsin, ta có
BC2 = AB2 + AC2 – 2.AB.AC.cosA
\( = {4^2} + {5^2} - 2.4.5.\frac{3}{5} = 17\).
Suy ra \(BC = \sqrt {17} \).
Nửa chu vi ∆ABC là:
\(p = \frac{{AB + AC + BC}}{2} = \frac{{4 + 5 + \sqrt {17} }}{2} = \frac{{9 + \sqrt {17} }}{2}\).
Diện tích ∆ABC là:
\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} \)
\( = \sqrt {\frac{{9 + \sqrt {17} }}{2}\left( {\frac{{9 + \sqrt {17} }}{2} - 4} \right)\left( {\frac{{9 + \sqrt {17} }}{2} - 5} \right)\left( {\frac{{9 + \sqrt {17} }}{2} - \sqrt {17} } \right)} \)
= 8 (đơn vị diện tích).
Ta có \(S = \frac{1}{2}.BC.{h_a}\)
\( \Leftrightarrow 8 = \frac{1}{2}.\sqrt {17} .{h_a}\)
\( \Leftrightarrow {h_a} = \frac{{16\sqrt {17} }}{{17}}\)
Vậy ta chọn đáp án A.
Câu 7:
17/07/2024Hướng dẫn giải
Đáp án đúng là: B
Bán kính đường tròn ngoại tiếp ∆ABC là R = 3.
∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {30^\circ + 45^\circ } \right) = 105^\circ \).
Theo hệ quả định lí sin, ta có:
⦁ a = 2R.sinA = 2.3.sin30° = 3.
⦁ b = 2R.sinB = 2.3.sin45° = \(3\sqrt 2 \).
⦁ c = 2R.sinC = 2.3.sin105° = \(\frac{{3\sqrt 6 + 3\sqrt 2 }}{2}\).
Nửa chu vi của ∆ABC là:
\(p = \frac{{a + b + c}}{2} = \frac{{3 + 3\sqrt 2 + \frac{{3\sqrt 6 + 3\sqrt 2 }}{2}}}{2} = \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}\).
Ta có S = pr = \(\frac{1}{2}\)ab.sinC
\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{1}{2}.3.3\sqrt 2 .\sin 105^\circ \)
\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{{9 + 9\sqrt 3 }}{4}\)
⇔ r ≈ 0,94.
Vậy ta chọn phương án B.
Câu 8:
23/07/2024Hướng dẫn giải
Đáp án đúng là: C
Vì \(\sqrt 6 - \sqrt 2 < 2\sqrt 2 < 2\sqrt 3 \) nên c < b < a.
Do đó \(\widehat C < \widehat B < \widehat A\).
Tức là, \(\widehat A\) lớn nhất.
Theo hệ quả định lí côsin, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 6 - \sqrt 2 } \right)}^2} - {{\left( {2\sqrt 3 } \right)}^2}}}{{2.2\sqrt 2 .\left( {\sqrt 6 - \sqrt 2 } \right)}} = - \frac{1}{2}\).
Suy ra \(\widehat A = 120^\circ \).
Vậy ta chọn phương án C.
Câu 9:
12/07/2024Cho ∆ABC. Khẳng định nào sau đây đúng?
Hướng dẫn giải
Đáp án đúng là: A
Theo hệ quả định lí côsin, ta có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Diện tích ∆ABC là: \(S = \frac{1}{2}bc.\sin A\).
Ta có \(\cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc.\sin A}}\)
\( = \frac{{{b^2} + {c^2} - {a^2}}}{{4.\frac{1}{2}bc.\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}}\)
Vậy ta chọn phương án A.
Câu 10:
23/07/2024Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:
Hướng dẫn giải
Đáp án đúng là: D
• Theo hệ quả định lí sin, ta có:
\(\sin C = \frac{c}{{2R}}\) và \(\sin B = \frac{b}{{2R}}\).
• Theo hệ quả của định lí côsin, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
• Ta có sinC = 2sinB.cosA
\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\[ \Leftrightarrow c = 2b.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Leftrightarrow c = \frac{{{b^2} + {c^2} - {a^2}}}{c}\]
⇔ c2 = b2 + c2 – a2
⇔ b2 = a2
⇔ b = a (vì a, b > 0)
Hay AC = BC.
Suy ra ∆ABC cân tại C.
Vậy ta chọn phương án D.
Bài thi liên quan
-
Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (Vận dụng)
-
10 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (557 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (Phần 2) (376 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 Bài 2. Định lí côsin và định lí sin có đáp án (5829 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 2. Định lí côsin và định lí sin có đáp án (Phần 2) (567 lượt thi)
- Trắc nghiệm Toán 10 Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án (489 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án (Phần 2) (433 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài tập ôn tập chương 4 có đáp án (Phần 2) (412 lượt thi)
- Trắc nghiệm Toán 10 Bài tập cuối chương 4 có đáp án (289 lượt thi)