Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Cánh diều Bài 2. Giải Tam Giác có đáp án (Phần 2)

Trắc nghiệm Toán 10 Cánh diều Bài 2. Giải Tam Giác có đáp án (Phần 2)

Trắc nghiệm Toán 10 Cánh diều Bài 2. Giải Tam Giác có đáp án (Phần 2) (Thông hiểu)

  • 635 lượt thi

  • 8 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

18/10/2024

Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 3 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích tam giác mới được tạo nên bằng:

Xem đáp án

Đáp án đúng : C

*Phương pháp giải:

Áp dụng định lý sin trong tam giác về tính S. 

- Khi tăng cạnh BC lên 3 lần và AC lên 3 và giữ nguyên độ lớn góc C thì S mới ta vẫn sẽ tính dùng định lý sin và thay cạnh đã tăng tương ứng vào

*Lời giải:

Có S = 12 BC.CA.sinC

Gọi S’ là diện tích tam giác khi tăng cạnh BC lên 3 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn góc C

Ta có: S’ =12 .3BC.3CA.sinC = 9 . 12 BC.CA.sinC = 9S.

* Các lý thuyết cần nắm về các công thức trong hệ thức lượng tam giác:

Định lí côsin

Cho tam giác ABC có BC = a, AC = b và AB = c. Ta có

a2 = b2 + c2 – 2bc.cosA;

b2 = c2 + a2 – 2ca.cosB;

c2 = a2 + b2 – 2ab.cosC.

Hệ quả

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án 

Định lí sin

Cho tam giác ABC có BC = a, AC = b, AB = c và R là bán kính đường tròn ngoại tiếp.

Ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Công thức tính diện tích tam giác:

• Cho tam giác ABC có BC = a, CA = b, AB = c. Khi đó, diện tích S của tam giác ABC là:

S = 12bc.sinA = 12ca.sin = 12ab.sinC

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Giải tam giác. Tính diện tích tam giác – Toán 10 Cánh diều 

Giải Toán 10 Bài 2 SGK (Cánh diều): Giải tam giác. Tính diện tích tam giác 

Trắc nghiệm Toán 10 Cánh diều Bài 2. Giải Tam Giác có đáp án (Phần 2)


Câu 2:

22/07/2024

Cho tam giác ABC có AB = 10 cm, AC = 20 cm và có diện tích là 90 cm2. Giá trị sinA là:

Xem đáp án

Đáp án đúng là: C

Ta có: S = 12 AB.AC.sinA  sinA = 2SAB.AC = 2.9010.20 = 910 .


Câu 6:

23/07/2024

Hai chiếc tàu thuỷ cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc 60°. Tàu B chạy với tốc độ 20 hải lí một giờ. Tàu C chạy với tốc độ 15 hải lí một giờ. Sau hai giờ hai tàu cách nhau bao nhiêu hải lí? (kết quả gần nhất).

Hai chiếc tàu thuỷ cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc (ảnh 1)
Xem đáp án

Đáp án đúng là: B

Sau hai giờ tàu B đi được 20 . 2 = 40 hải lí, tàu C đi được 15 . 2 = 30 hải lí. Vậy tam giác ABC có AB = 40, AC = 30 và A^ = 60°.

Áp dụng định lí côsin vào tam giác ABC, ta có

BC2 = AC2 + AB2 – 2AC.AB.cosA = 302 + 402 – 2.30.40.cos60° = 900 + 1600 – 1200 = 1300

Vậy BC =1300 ≈ 36 (hải lí).

Sau 2 giờ, hai tàu đang cách nhau khoảng 36 hải lí.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương