Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 3. Giải tam giác và ứng dụng thực tế có đáp án

Trắc nghiệm Toán 10 Bài 3. Giải tam giác và ứng dụng thực tế có đáp án

Trắc nghiệm Toán 10 Bài 3. Giải tam giác và ứng dụng thực tế có đáp án

  • 591 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

20/07/2024

Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Áp dụng hệ quả định lí côsin cho tam giác ABC ta có:

cosA=AB2+AC2BC22.AB.AC=152+1322422.15.13=715

Do đó A^117°49'. 

Vậy  A^117°49'.


Câu 2:

22/07/2024

Tam giác ABC có A^=68°12',B^=34°44', AB = 117. Độ dài cạnh AC là khoảng:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác ABC có A^=68°12',B^=34°44', ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°68°12'34°44'=77°4'.

Áp dụng định lí sin trong tam giác ABC ta có: ACsinB=ABsinC

AC=AB.sinBsinC=117.sin34°44'sin77°4'68. 

Vậy AC ≈ 68.


Câu 3:

16/07/2024

Tam giác ABC có AB=2;AC=3 C^=45°. Độ dài cạnh BC là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Áp dụng định lí côsin cho tam giác ABC ta có:

AB2 = AC2 + BC2 – 2.AC.BC.cosC

22=32+BC22.3.BC.cos45° 

BC26.BC+1=0 

BC=6+22 (vì BC > 0)

Vậy BC=6+22


Câu 4:

14/07/2024

Cho tam giác ABC có AB=3+1,AC=6, BC = 2. Số đo của B^A^ là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Áp dụng hệ quả định lí côsin cho tam giác ABC ta có:

+) cosA=AB2+AC2BC22.AB.AC=3+12+62222.3+16=22A^=45° 

+) cosB=AB2+BC2AC22.AB.BC=3+12+22622.3+1.2=12B^=60° 

Do đó B^A^=60°45°=25°.B^=60° 

Vậy  B^A^=25°.


Câu 5:

19/10/2024

Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

Xem đáp án

Đáp án đúng là: D

*Phương pháp giải:

- Tính góc A dựa vào công thức tính diện tích tam giác

- Tính BC theo định lý cosin

*Lời giải:

Diện tích tam giác ABC là: S=12.AB.AC.sinAsinA=2SAB.AC

sinA=2.125.8=35A^36°52'  (vì góc A là góc nhọn)

Xét tam giác ABC có AB = 5, AC = 8 và A^36°52', áp dụng định lí côsin ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

BC2 ≈ 52 + 82 – 2.5.8.cos36°52' ≈ 25

Þ BC ≈ 5.

Vậy BC ≈ 5.

* Các dạng bài tập và lý thuyết thêm giá trị lượng giác

Dạng 1: Tính toán các tỉ số lượng giác, độ dài các cạnh trong tam giác

 * Phương pháp giải: Sử dụng các tỉ số lượng giác của góc nhọn, định lý Py-ta-go, hệ thức lượng trong tam giác vuông để tính toán các yếu tố cần thiết.

Dạng 2: So sánh các tỉ số lượng gác, các góc

* Phương pháp giải : Đưa các tỉ số lượng giác về cùng loại, áp dụng tính chất nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtan góc kia và so sánh dựa trên các tính chất:

Nếu hai góc nhọn α, β, có sinα=sinβ hoặc cosα=cosβ thì α=β.

Các bài toán về Tỉ số lượng giác của góc nhọn và cách giải – Toán lớp 9 (ảnh 1)

Dạng 3: Rút gọn, tính toán các biểu thức lượng giác

* Phương pháp giải: Áp dụng các tính chất: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtan góc kia. Nếu là một góc nhọn bất kì thì:

Các bài toán về Tỉ số lượng giác của góc nhọn và cách giải – Toán lớp 9 (ảnh 1)

Dạng 4: Chứng minh biểu thức, đẳng thức liên quan đến tỉ số lượng giác

* Phương pháp giải:  Áp dụng các tính chất: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtan góc kia. Nếu là một góc nhọn bất kì thì:

Các bài toán về Tỉ số lượng giác của góc nhọn và cách giải – Toán lớp 9 (ảnh 1)

Đối với bài chứng minh biểu thức không phụ thuộc vào giá trị của góc thì cần phải biến đổi sao cho không còn tồn tại các góc trong biểu thức.

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Giải tam giác. Tính diện tích tam giác – Toán 10 Cánh diều 

Bài tập Giải tam giác và ứng dụng thực tế có đáp án

Trắc nghiệm Định lí côsin và định lí sin(có đáp án)


Câu 6:

10/11/2024

Cho tam giác ABC có AB = 5, A^=40°,B^=60°. Độ dài BC gần nhất với kết quả nào?

Xem đáp án

Đáp án đúng là: B

Lời giải

Xét tam giác ABC có A^=40°,B^=60°, ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°40°60°=80°.

Theo định lí sin ta có: BCsinA=ABsinC

BC=AB.sinAsinC=5.sin40°sin80°3,3 

Vậy BC ≈ 3,3.

*Phương pháp giải

Dựa vào định lí tổng 3 góc trong tam giác tính được góc C

Sử dụng định lí sin tính được BC

*Lý thuyết

Tổng ba góc của một tam giác bằng 180o

Với ΔABC ta có ∠A + ∠B + ∠C = 180o

Định lí sin:

Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

asinA=bsinB=csinC=2R;

Trong đó R là bán kính đường tròn ngoại tiếp tam giác ABC.

Từ định lí sin, ta có hệ quả sau đây:

Hệ quả:

a = 2R.sinA; b = 2R.sinB; c = 2R.sinC;

sinA=a2R;sinB=b2R;sinC=c2R. 

Xem thêm

Tất tần tật về Định lí Sin (2024) chi tiết nhất 

Lý thuyết Định lí côsin và định lí sin – Toán 10 Chân trời sáng tạo 

 

 

 

Câu 7:

21/07/2024

Cho tam giác ABC. Biết AB = 2, BC = 3 và ABC^=60°. Chu vi và diện tích tam giác ABC lần lượt là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác ABC có AB = 2, BC = 3 và ABC^=60°, áp dụng định lí côsin ta có:

AC2 = AB2 + BC2 – 2.AB.BC.cosABC^ 

Þ AC2 = 22 + 32 – 2.2.3.cos60° = 7 AC=7 

Do đó chu vi tam giác ABC là: AB + AC + BC =2+3+7=5+7. 

Diện tích tam giác ABC là:

S=12.BA.BC.sinABC^=12.2.3.sin60°=332 (đơn vị diện tích).

Vậy chu vi và diện tích tam giác ABC lần lượt là: 5+7 332. 


Câu 8:

18/07/2024

Tam giác ABC vuông tại B. Trên cạnh AC lấy hai điểm M, N sao cho các góc ABM^, MBN^, NBC^ bằng nhau. Đặt AB = q, BC = m, BM = x, BN = y. Trong các hệ thức sau, hệ thức nào đúng?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Tam giác ABC vuông tại B. Trên cạnh AC lấy hai điểm M, N sao cho các góc (ảnh 1)

Ta có ABM^=MBN^=NBC^=ABC^3=90°3=30° 

ABN^=MBC^=60° 

Áp dụng định lí côsin cho tam giác ABM ta có:

AM2 = AB2 + BM2 – 2.AB.BM.cosABM^ 

Þ AM2 = q2 + x2 – 2.q.x.cos30°

AM2=q2+x22.q.x.32=q2+x2qx3.      (1)

Do đó phương án B là mệnh đề sai.

Áp dụng định lí côsin cho tam giác ABN ta có:

AN2 = AB2 + BN2 – 2.AB.BN.cosABN^ 

Þ AN2 = q2 + y2 – 2.q.y.cos60°

AN2=q2+y22.q.y.12=q2+y2qy.    (2)

Do đó phương án C là mệnh đề đúng.

Từ (1) và (2) suy ra AM2 ≠ AN2 nên phương án A là mệnh đề sai.

Tam giác ABC vuông tại B nên AC2 = AB2 + BC2 = q2 + m2.

Do đó phương án D là mệnh đề sai.

Vậy ta chọn phương án C.


Câu 9:

23/07/2024

Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (ảnh 1)

Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có CAB^=180°51°40'=128°20'

Xét tam giác ABC ta có: CAB^+ABC^+ACB^=180° (định lí tổng ba góc trong tam giác)

ACB^=180°CAB^ABC^ 

ACB^=180°128°20'45°39'=6°1'.

Áp dụng định lí sin trong tam giác ABC ta có: ACsinABC^=ABsinACB^

ACsin45°39'=10sin6°1' AC=10.sin45°39'sin6°1'

Xét tam giác ACH vuông tại H có: CH=AC.sinCAH^ 

CH=10.sin45°39'sin6°1'.sin51°40' ≈ 53,51 (m)

Chiều cao của cột cờ là khoảng: 1,5 + 53,51 = 55,01 (m)

Vậy cột cờ cao khoảng 55,01 m.


Câu 10:

23/07/2024

Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một (ảnh 1)

Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Bán kính R của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.

Nửa chu vi của tam giác ABC là: p=AB+AC+BC2=4,3+7,5+3,72=314cm

Diện tích tam giác ABC theo công thức Heron là:

S=ppABpACpBC5,2cm2 

Mặt khác: S=AB.AC.BC4RR=AB.AC.BC4S4,3.7,5.3,74.5,25,73cm 

Vậy bán kính của chiếc đĩa là khoảng 5,73 cm.


Câu 11:

22/07/2024

Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. (ảnh 1)

Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Gọi x giờ (x > 0) là khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km.

Khi đó đoạn đường mà vận động viên A chạy được là 13x (km);

Đoạn đường mà vận động viên B chạy được là 12x (km).

Theo hình vẽ trên ta có: AB = 10, OA = 13x, OB = 12x và AOB^=135°15°=120° 

Áp dụng định lí côsin trong tam giác OAB ta có:

AB2 = OA2 + OB2 – 2.OA.OB.sinAOB^ 

Þ 102 = (13x)2 + (12x)2 – 2.13x.12x.sin120°

102=169x2+144x2312x2.32 

102=3131563x2 

x2=103131563 Þ x ≈ 0,483 (giờ) (vì x > 0) ≈ 29 phút.

Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 29 phút.

Vậy vào khoảng 9 giờ 29 phút thì hai vận động viên sẽ cách nhau 10 km.


Câu 12:

20/07/2024

Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Cho hai điểm A, B trên mặt đất sao cho ba điểm A, B và C thẳng hàng. Ta đo được AB = 24 m, CAD^=63°,CBD^=48°.

Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Cho hai điểm A, B (ảnh 1)

Chiều cao h của tháp gần với giá trị nào sau đây?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Xét tam giác ABD ta có: α=ADB^+β (tính chất góc ngoài của tam giác)

ADB^=αβ=63°48°=15°. 

Áp dụng định lí sin vào tam giác ABD, ta có: ADsinB=ABsinADB^ 

AD=ABsinADB^.sinB=24sin15°.sin48°68,91m 

Trong tam giác vuông ACD, có h = CD = AD.sinα

Þ h ≈ 68,91.sin63° ≈ 61,4 (m)


Câu 13:

22/07/2024

Cho tam giác ABC thỏa mãn: cosA.sinBC2=0. Khi đó ABC là một tam giác:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có: cosA.sinBC2=0cosA=0sinBC2=0

A=90°BC2=0°vì  BC2=180° là vô lí  

A^=90°B^=C^

Þ DABC vuông tại A hoặc DABC cân tại A.

Vậy DABC vuông tại A hoặc DABC cân tại A.


Câu 14:

16/07/2024

Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. (ảnh 1)

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Từ hình vẽ ta có ABC^=90°+15°30'=105°30' 

Xét tam giác ABC có CAB ^=60°, ABC^=105°30' ta có:

CAB^+ABC^+ACB^=180° (định lí tổng ba góc trong tam giác)

ACB^=180°CAB^ABC^ 

ACB^=180°60°105°30'=14°30'.

Áp dụng định lí sin trong tam giác ABC, ta có: ACsinABC^=ABsinACB^

AC=AB.sinABC^sinACB^=70.sin105°30'sin14°30'269,4m 

Tam giác ACH vuông tại H nên ta có: CH=AC.sinCAH^269,4.sin30°134,7m 

Vậy ngọn núi cao khoảng 135 m.


Câu 15:

20/07/2024

Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, OQ=2+6 m.

Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ (ảnh 1)

Khi đó đoạn PT bằng:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Ta có: SQB^=PQT^=α,TPO^=β 

Áp dụng định lí côsin trong tam giác OPQ ta có:

PQ2 = OP2 + OQ2 – 2.OP.OQ.cos POQ^ 

PQ2=22+2+62 2.2.2+6.cos45°  Þ PQ2 = 8 PQ=22m 

Áp dụng hệ quả định lí côsin trong tam giác OPQ ta có:

cosα=cosOQP^=OQ2+PQ2OP22.OQ.PQ=2+62+8222.2++6.22=32. 

Þ α = 30°

Xét tam giác POQ có: β = 45° + α (tính chất góc ngoài của tam giác)

Þ β = 45° + 30° = 75° TPO^=75° 

Xét tam giác OTP ta có: OTP^+TOP^+TPO^=180° (định lí tổng ba góc trong tam giác)

Hay OTP^+45°+75°=180°

OTP^=180°45°75°=60° 

Áp dụng định lí sin cho tam giác OTP ta có: OPsinOTP^=PTsinTOP^ 

2sin60°=PTsin45° PT=2.sin45°sin60°=2.2232=263. 

Vậy PT=263. 


Bắt đầu thi ngay