Trắc nghiệm Giải bài toán bằng cách lập phương trình (tiếp theo) (có đáp án)
Trắc nghiệm Toán 8 Bài 7: Giải bài toán bằng cách lập phương trình (tiếp theo)
-
328 lượt thi
-
19 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
21/07/2024Một xưởng dệt theo kế hoạch mỗi ngày phải dệt được 30 áo. Trong thực tế mỗi ngày xưởng dệt được 40 áo nên đã hoàn thành trước thời hạn 3 ngày, ngoài ra còn làm thêm được 20 chiếc áo nữa. Số sản phẩm thực tế làm được là:
Đáp án: B
Giải thích:
Lời giải
Gọi số sản phẩm xưởng cần làm theo kế hoạch là:
x (sản phẩm, x > 0, x ∈ N).
Thời gian dự kiến xong là: (ngày)
Vì theo thực tế đội làm được thêm 20 sản phẩm nên số sản phẩm thực tế làm được là: x + 20 (sản phẩm).
Thời gian làm thực tế là: (ngày)
Vì đội hoàn thành trước thời hạn 3 ngày nên
ta có phương trình: - = 3.
4x – 3x – 60 =360
x = 420 (TM)
Số sản phẩm theo dự kiến là: 420 (sản phẩm).
Số sản phẩm làm được thực tế là:
420 + 20 = 440 (sản phẩm).
Câu 2:
23/07/2024Một người đi xe máy từ A đến B, với vận tốc 30km/h. Lúc về người đó đi với vận tốc 24 km/h. Do đó thời gian về lâu hơn thời gian đi là 30 phút. Thời gian lúc đi là:
Đáp án: B
Giải thích:
Lời giải
Đổi 30 phút = (h).
Gọi thời gian lúc đi là x (giờ), quãng đường AB dài là: 30x (km)
Thời gian người đó đi quãng đường AB lúc về là: (h)
Theo đề bài ta có phương trình
30x – 24x = 12
6x = 12
x = 2 (giờ)
Câu 3:
21/07/2024Một đội thợ mỏ theo kế hoạch mỗi ngày phải khai thác 50m3 than. Do siêng năng làm việc nên trên thực tế mỗi ngày đội khai thác được 57m3 than. Vì vậy không những đã xong trước thời hạn 1 ngày mà còn vượt mức 13m3 than. Theo kế hoạch, đội phải khai thác số m3 than là
Đáp án: A
Giải thích:
Lời giải
Gọi số ngày dự kiến đội hoàn thành khai thác theo kế hoạch là x (ngày, x > 0)
Thời gian đội hoàn thành khai thác theo thực tế là: x – 1 (ngày)
Lượng than đội dự kiến khai thác là: 50x(m3)
Lượng than đội khai thác thực tế là 57(x – 1) (m3)
Vì đội vượt mức 13m3 nên ta có phương trình:
57(x – 1) = 50x + 13
7x = 70
x = 10 (thỏa mãn)
Vậy lượng than dự định khai thác là: 10.50 = 500 (m3)
Câu 4:
23/07/2024Một người đi xe máy từ A đến B với vận tốc 25 km/h. Lúc về người đó đi với vận tốc 30 km/h nên thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB?
Đáp án: C
Giải thích:
Lời giải
Gọi quãng đường AB dài x (x > 0, km)
Thời gian lúc đi là (h)
Thời gian lúc về là (h)
Vì thời gian về ít hơn thời gian đi là
20 phút ( h) nên ta có phương trình
5x + 50 = 6x
x = 50 (TM)
Vậy quãng đường AB dài 50km
Câu 5:
16/07/2024Một ca nô xuôi dòng từ A đến B hết 1h24 phút và ngược dòng hết 2h. Biết vận tốc dòng nước là 3km/h. Tính vận tốc riêng của ca nô?
Đáp án: C
Giải thích:
Lời giải
Gọi vận tốc riêng của ca nô là x (x > 3) km/h
Vận tốc khi xuôi dòng là x + 3 (km/h)
Vận tốc khi ngược dòng là x – 3 (km/h)
Đổi 1 giờ 24 phút = giờ.
Vì ca nô xuôi dòng và ngược dòng trên khúc sông AB nên ta có phương trình
Vậy vận tốc riêng của ca nô là 17 (km/h)
Câu 6:
22/07/2024Trong tháng Giêng hai tổ công nhân may được 800 chiếc áo. Tháng Hai, tổ 1 vượt mức 15%, tổ 2 vượt mức 20% do đó cả hai tổ sản xuất được 945 cái áo. Tính xem trong tháng đầu, tổ 1 may được bao nhiêu chiếc áo?
Đáp án: A
Giải thích:
Lời giải
Gọi số áo tổ 1 làm được trong tháng Giêng là x (x N*; x < 800) (áo)
Thì số áo tổ 2 làm được trong tháng Giêng là 800 – x (áo)
Vì tháng Hai, tổ 1 vượt mức 15% nên số áo vượt mức là 15%.x = x (áo)
Và tổ 2 vượt mức 20% nên số áo vượt mức là 20%(800 – x) = (áo)
Vì tháng Hai, cả hai tổ sản xuất được 945 cái áo nên vượt mức với tháng Giêng 945 – 800 = 145 áo
Nên ta có phương trình
x + = 145
3x + 3200 – 4x = 2900
x = 300 (TM)
Vậy trong tháng Giêng tổ 1 làm được 300 áo.
Câu 7:
23/07/2024Hình chữ nhật có đường chéo 10cm. Chiều rộng kém chiều dài 2cm. Diện tích hình chữ nhật là:
Đáp án: C
Giải thích:
Lời giải
Giả sử hình chữ nhật ABCD có chiều dài AB = x (cm), (x > 2)
Chiều rộng BC là: x – 2 (cm)
Độ dài đường chéo AC = 10cm, theo định lí Pitago ta có:
x2 + (x – 2)2= 102
x2 + x2 – 4x + 4 = 100
2x2 – 4x – 96 = 0
(x – 8)(x + 6) = 0
Do đó chiều dài hình chữ nhật là: 8(cm) và chiều rộng là 6(cm) nên diện tích hình chữ nhật đó là 8.6 = 48 (cm2)
Câu 8:
22/07/2024Tổng của chữ số hàng đơn vị và hai lần chữ số hàng chục của một số có hai chữ số là 10. Nếu đổi chỗ hai chữ số này cho nhau thì ta thu được số mới nhỏ hơn số cũ là 18 đơn vị. Tổng các chữ số đã cho là:
Đáp án: C
Giải thích:
Lời giải
Gọi số đã cho là (a, b {0; 1; 2; …; 9}, a ≠ 0
Tổng chữ số hàng đơn vị và hai lần chữ số hàng chục
là 10 nên b + 2a = 10 hay b = 10 – 2a
Nếu đổi chỗ hai chữ số cho nhau ta đươc số
Số mới nhỏ hơn số cũ 18 đơn vị nên ta có: - = 18
10a + b – (10b + a) = 18
9a – 9b = 18
Thay b = 10 – 2a vào phương trình trên ta được:
9a – 9(10 – 2a) = 18
9a – 90 + 18a = 18
27a = 108
a = 4
Suy ra b = 10 – 2.4 = 2
nên a + b = 4 + 2 = 6
Câu 9:
23/07/2024Một ca nô xuôi dòng từ A đến B hết 1h20 phút và ngược dòng hết 2h. Biết vận tốc dòng nước là 3km/h. Tính vận tốc riêng của ca nô?
Đáp án: D
Giải thích:
Lời giải
Gọi vận tốc riêng của ca nô là x (x > 3) km/h
Vận tốc khi xuôi dòng là x + 3 (km/h)
Vận tốc khi ngược dòng là x – 3 (km/h)
Đổi 1 giờ 20 phút = giờ. Vì ca nô xuôi dòng và ngược dòng trên khúc sông AB nên ta có phương trình
(x + 3) = 2(x – 3)
x + 4 = 2x – 6
x = 10
x = 15 (TM)
Vậy vận tốc riêng của ca nô là 15 (km/h)
Câu 10:
22/07/2024Hai vòi nước cùng chảy vào một bể thì bể sẽ đầy trong 3 giờ 20 phút. Người ta cho vòi thứ nhất chảy trong 3 giờ, vòi thứ hai chảy trong 2 giờ thì cả hai vòi chảy được bể. Thời gian vòi một chảy một mình đầy bể là:
Đáp án: D
Giải thích:
Lời giải
Đổi 3 giờ 20 phút = giờ.
Gọi thời gian vòi một chảy một mình đầy bể là x (giờ),
điều kiện x >
Coi bể đầy bằng 1 ta có:
Một giờ hai vòi chảy được 1 : = (bể)
Một giờ vòi 1 chảy được (bể).
Một giờ vòi 2 chảy được - (bể)
Trong 3 giờ vòi 1 chảy được 3. = (bể)
Trong 2 giờ vòi 2 chảy được (bể)
Vòi 1 chảy trong 3 giờ vòi hai chảy trong 2 giờ được:
+
Theo bài ra ta có phương trình:
+ =
x = 5
Vậy nếu chảy một mình thì vòi 1 chảy trong 5 giờ đầy bể.
Câu 11:
23/07/2024Trong tháng Giêng hai tổ sản xuất được 720 chi tiết máy. Tháng Hai, tổ 1 vượt mức 15%, tổ hai vượt mức 12% nên sản xuất được 819 chi tiết máy. Tính xem trong tháng giêng, tổ 2 sản xuất được bao nhiêu chi tiết máy?
Đáp án: A
Giải thích:
Lời giải
Gọi số chi tiết máy tổ 1 làm được trong tháng Giêng là x (x N*; x < 720) (chi tiết máy)
Thì số chi tiết máy tổ 2 làm được trong tháng Giêng
là: 720 – x (chi tiết máy)
Vì tháng Hai, tổ 1 vượt mức 15% nên số chi tiết máy vượt mức
là: 15%.x = x (chi tiết máy)
Và tổ 2 vượt mức 12% nên số chi tiết máy vượt mức
là 12%(720 – x) = (chi tiết máy)
Vì tháng hai, cả hai tổ sản xuất được 819 chi tiết máy nên vượt mức với tháng Giêng là: 819 – 720 = 99 (chi tiết máy).
Nên ta có phương trình:
+ = 99
5.3x + 4.3(720 – x) = 99.100
3x = 1260
x = 420 (TM)
Vậy trong tháng Giêng tổ một làm được 420 chi tiết máy
Tổ hai làm được 720 - 420 = 300 chi tiết máy.
Câu 12:
16/07/2024Năm nay tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương. Hỏi năm nay Phương bao nhiêu tuổi?
Đáp án: A
Giải thích:
Lời giải
Gọi x là tuổi của Phương năm nay. Điều kiện: x nguyên dương.
Tuổi của mẹ năm nay là 3x tuổi.
13 năm nữa tuổi của Phương là: x + 13 (tuổi)
13 năm nữa tuổi của mẹ Phương là: 3x + 13 (tuổi)
13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương nên ta có phương trình:
3x + 13 = 2(x + 13)
3x + 13 = 2x + 26
x = 13 (tm)
Vậy Phương năm nay 13 tuổi
Câu 13:
22/07/2024Tìm số tự nhiên có bốn chữ số, biết rằng nếu viết thêm chữ số 1 vào đằng trước ta được số A có năm chữ số, nếu viết thêm chữ số 4 vào đằng sau ta được số B có năm chữ số, trong đó B gấp 4 lần A
Đáp án: B
Giải thích:
Lời giải
Gọi số phải tìm là là x. Điều kiện x N; 1000 ≤ x ≤ 9999
Viết thêm chữ số 1 vào đằng trước ta được
A =
Viết thêm chữ số 4 vào đằng sau ta được
B =
Theo đề bài B = 4A nên có phương trình
10x + 4 = 4(10000 + x)
Giải phương tình 10x + 4 = 40000 + 4x
10x – 4x = 40000 – 4
6x = 39996
x = 6666
Giá trị x = 6666 thỏa mãn các điều kiện nêu trên.
Số phải tìm là 6666.
Câu 14:
23/07/2024Hai ô tô khởi hành cùng một lúc từ hai tỉnh A và B cách nhau 150km, đi ngược chiều và gặp nhau sau 2 giờ. Biết rằng nếu vận tốc của ô tô A tăng thêm 15 km/h thì bằng 2 lần vận tốc ô tô, vận tốc ô tô B là:
Đáp án: A
Giải thích:
Lời giải
Gọi vận tốc xe A là x (km/h, x > 0)
Vận tốc ô tô B là (km/h)
Quãng đường xe A đi được trong 2 giờ là 2x (km)
Quãng đường xe B đi được trong 2 giờ
là: 2. = x + 15 (km)
Do hai xe gặp nhau sau 2 giờ và quãng đường AB dài 150km nên ta có phương trình: 2x + x + 15 = 150
3x = 135 x = 45 (TM)
Vậy vận tốc xe B là: = 30 km/h
Câu 15:
23/07/2024Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm. Khi thực hiện tổ đã sản xuất được 57 sản phẩm một ngày. Do đó hoàn thành trước kế hoạch 1 ngày và còn vượt mức 13 sản phẩm. Hỏi theo kế hoạch tổ sản xuất bao nhiêu sản phẩm?
Đáp án: D
Giải thích:
Lời giải
Gọi tổng sản phẩm tổ phải sản xuất theo kế hoạch là x (x > 0, xN) (sản phẩm)
Thời gian theo kế hoạch là (ngày)
Theo thực tế số sản phẩm tổ đã làm là x + 13 (sản phẩm)
Vì thực tế tổ hoàn thành trước 1 ngày nên ta có phương trình
50(x + 13) + 2850 = 57x
7x = 3500
x = 500 (TM)
Vậy tổng sản phẩm theo kế hoạch là 500 sản phẩm
Câu 16:
21/07/2024Một mảnh vườn hình chữ nhật có chu vi 56m. Nếu tăng chiều dài 4m và giảm chiều rộng 2m thì diện tích tăng 8m2. Chiều dài của hình chữ nhật là:
Đáp án: A
Giải thích:
Lời giải
Nửa chu vi của hình chữ nhật ban đầu là: 56 : 2 = 28 (m)
Gọi chiều dài hình chữ nhật ban đầu là x(m), (0 < x < 28)
Suy ra chiều rộng hình chữ nhật ban đầu là: 28 – x (m)
Diện tích hình chữ nhật ban đầu là:
x(28 – x) = 28x – x2 (m2)
Tăng chiều dài lên 4m thì chiều dài mới là: x + 4 (m)
Giản chiều rộng 2m thì chiều rộng mới là:
28 – x – 2 = 26 – x (m).
Diện tích hình chữ nhật mới là:
(x + 4)(26 – x) = 104 + 22x – x2 (m2)
Theo đề bài ta có phương trình:
28x – x2 + 8 = 104 + 22x – x2
6x = 96 x = 16 (TM)
Vậy chiều dài hình chữ nhật là 16m.
Câu 17:
22/07/2024Một hình chữ nhật có chu vi 372 m nếu tăng chiều dài 21m và tăng chiều rộng 10m thì diện tích tăng 2862m2. Chiều dài của hình chữ nhật ban đầu là:
Đáp án: D
Giải thích:
Lời giải
Nửa chu vi của hình chữ nhật ban đầu là:
372 : 2 = 186 (m)
Gọi chiều dài hình chữ nhật ban đầu là x(m), (0 < x < 186)
Suy ra chiều rộng hình chữ nhật ban đầu là: 186 – x (m)
Diện tích hình chữ nhật ban đầu là:
x(186 – x) = 186x – x2 (m2)
Tăng chiều dài lên 21m thì chiều dài mới là: x + 21 (m)
Tăng chiều rộng lên 10m thì chiều rộng là:
186 – x + 10 = 196 – x (m).
Diện tích hình chữ nhật mới là:
(x + 21)(196 – x)
= 175x – x2 + 4116 (m2)
Theo đề bài ta có phương trình:
186x – x2 + 2862 = 175x – x2 + 4116
11x = 1254 x = 114 (TM)
Vậy chiều dài hình chữ nhật là 114m.
Câu 18:
22/07/2024Một đội máy cày dự định cày 40 ha ruộng 1 ngày. Do sự cố gắng, đội đã cày được 52 ha mỗi ngày. Vì vậy, chẳng những đội đã hoàn thành sớm hơn 2 ngày mà còn cày vượt mức được 4 ha nữa. Tính diện tích ruộng đội phải cày theo dự định.
Đáp án: D
Giải thích:
Lời giải
Gọi số ngày dự kiến đội hoàn thành cày ruộng theo kế hoạch là x (ngày, x > 0)
Đội hoàn thành diện tích ruộng theo kế hoạch là: 40x (ha)
Thời gian thực tế đội hoàn thành diện tích ruộng là: x – 2 (ngày)
Đội hoàn thành diện tích ruộng theo thực tế là: 52(x – 2) (ha)
Vì tổ vượt mức 4ha nên ta có phương trình:
52(x – 2) = 40x + 4
12x = 108 x = 9 (thỏa mãn)
Vậy diện tích ruộng cần cày theo dự định là 9.40 = 360 (ha)
Câu 19:
17/07/2024Lúc 7 giờ một người đi xe máy khởi hành từ A với vận tốc 30 km/h. Sau đó một giờ, người thứ hai cũng đi xe máy từ A đuổi theo với vận tốc 45 km/h. Hỏi đến mấy giờ người thứ hai mới đuổi kịp người thứ nhất?
Đáp án: C
Giải thích:
Lời giải
Gọi thời gian người thứ nhất đi đến khi gặp nhau là x (x > 1) (giờ)
Thì thời gian người thứ hai đi đến khi gặp nhau là x – 1 (giờ)
Vì quãng đường hai người đi là bằng nhau nên ta có phương trình
30x = 45(x – 1)
15x = 45
x = 3 (TM)
Vậy người thứ hai đuổi kịp người thứ nhất lúc 7 + 3 = 10 giờ
Có thể bạn quan tâm
- Trắc nghiệm Giải bài toán bằng cách lập phương trình (tiếp theo) (có đáp án) (327 lượt thi)
- Bài tập Giải bài toán bằng cách lập phương trình (tiếp) - Luyện tập (trang 31-32) (có lời giải) (249 lượt thi)
- Giải bài toán bằng cách lập phương trình có đáp án (Vận dụng) (213 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Phương trình bậc nhất một ẩn và cách giải (có đáp án) (421 lượt thi)
- Trắc nghiệm Phương trình tích có đáp án (Nhận biết) (407 lượt thi)
- Trắc nghiệm Toán 8 (có đáp án) Phương trình bậc nhất một ẩn và cách giải (P1) (375 lượt thi)
- Trắc nghiệm Phương trình tích (có đáp án) (333 lượt thi)
- Trắc nghiệm Phương trình chứa ẩn ở mẫu (có đáp án) (308 lượt thi)
- Trắc nghiệm Ôn tập Chương 3: Phương trình bậc nhất một ẩn (có đáp án) (305 lượt thi)
- Trắc nghiệm Giải bài toán bằng cách lập phương trình (có đáp án) (300 lượt thi)
- Bài tập Giải bài toán bằng cách lập phương trình (có lời giải chi tiết) (292 lượt thi)
- Trắc nghiệm Phương trình đưa về được dạng ax + b (có đáp án) (287 lượt thi)
- Trắc nghiệm Mở đầu về phương trình (có đáp án) (265 lượt thi)