Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án
Dạng 4: Xét sự biến thiên của hàm số bậc hai có đáp án
-
2389 lượt thi
-
12 câu hỏi
-
45 phút
Danh sách câu hỏi
Câu 1:
20/07/2024Hướng dẫn giải:
Xét hàm số y = –x2 + 4x + 5 có a = –1 < 0, b = 4, c = 5
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.( - 1)}} = 2\); \( - \frac{\Delta }{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{{\left( { - 4} \right)}^2} - 4.( - 1).5}}{{4.( - 1)}} = 9\).
Do đó, hàm số đồng biến trên khoảng (–∞; 2), nghịch biến trên khoảng (2; +∞).
Bảng biến thiên:
Câu 2:
12/07/2024Hướng dẫn giải:
Xét hàm số y = 2x2 + 2x + 1 có a = 2 > 0, b = 2, c = 1.
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.2}} = \frac{{ - 1}}{2}\); \(\frac{{ - \Delta }}{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{2^2} - 4.2.1}}{{4.2}} = \frac{1}{2}\).
Do đó, hàm số nghịch biến trên khoảng \(\left( { - \infty ;\frac{{ - 1}}{2}} \right)\), đồng biến trên khoảng \(\left( {\frac{{ - 1}}{2}; + \infty } \right)\).
Bảng biến thiên:
Câu 3:
19/07/2024Hàm số y = x2 – 4x + 5 đồng biến trên khoảng:
Hướng dẫn giải:
Đáp án đúng là: A.
Xét hàm số y = x2 – 4x + 5 có a = 1 > 0, b = – 4, c = 5.
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2\)
Do đó, hàm số đồng biến trên khoảng (2; +∞)
Câu 4:
21/07/2024Hàm số y = –3x2 + 6x + 1 đồng biến trên khoảng:
Hướng dẫn giải:
Đáp án đúng là: C.
Xét hàm số y = –3x2 + 6x + 1 có a = –3 < 0, b = 6, c = 1.
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 3)}} = 1\).
Do đó, hàm số đồng biến trên khoảng (–∞; 1).
Câu 5:
18/07/2024Hàm số y = –x2 + 2x – 2 nghịch biến trên khoảng:
Hướng dẫn giải:
Đáp án đúng là: D.
Xét hàm số y = –x2 + 2x – 2 có a = –1 < 0, b = 2, c = –2
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.( - 1)}} = 1\)
Do đó, hàm số nghịch biến trên khoảng (1; +∞).
Câu 6:
12/07/2024Hàm số y = 4x2 – 24x – 6 nghịch biến trên khoảng:
Hướng dẫn giải:
Đáp án đúng là: A.
Xét hàm số y = 4x2 – 24x – 6 có a = 4 > 0, b = –24, c = –6.
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - ( - 24)}}{{2.4}} = 3\).
Do đó, hàm số nghịch biến trên khoảng (–∞; 3).
Câu 7:
18/07/2024Cho hàm số y = x2 – 4x – 6. Khẳng định nào sau đây là đúng ?
Hướng dẫn giải:
Đáp án đúng là: C.
Xét hàm số y = x2 – 4x – 6 có a = 1 > 0, b = –4, c = –6
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2\).
Do đó, hàm số nghịch biến trên khoảng (–∞; 2) và đồng biến trên khoảng (2; + ∞).
Câu 8:
22/07/2024Cho hàm số y = –x2 + 8x – 3. Khẳng định nào sau đây là đúng ?
Hướng dẫn giải:
Đáp án đúng là: B.
Xét hàm số y = –x2 + 8x – 3 có a = –1 < 0, b = 8, c = –3
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 8}}{{2.( - 1)}} = 4\)
Do đó, hàm số đồng biến trên khoảng (–∞; 4) và nghịch biến trên (4; +∞).
Câu 9:
23/07/2024Cho hàm số y = –x2 + 4x – 3. Khẳng định nào sau đây là đúng ?
Hướng dẫn giải:
Đáp án đúng là: A.
Xét hàm số y = –x2 + 4x – 3 có a = –1 < 0, b = 4, c = –3
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.( - 1)}} = 2\)
Do đó, hàm số đồng biến trên khoảng (–∞; 2) và nghịch biến trên khoảng (2; +∞).
Câu 10:
11/12/2024Cho hàm số y = x2 + 6x – 5. Khẳng định nào sau đây là đúng ?
Đáp án đúng là: B.
Lời giải
Xét hàm số y = x2 + 6x – 5 có a = 1 > 0, b = 6, c = –5
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.1}} = - 3\).
Do đó, hàm số nghịch biến trên khoảng (–∞; –3) và đồng biến trên khoảng (–3; +∞).
*Phương pháp giải:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Tính denta tìm nghiệm
Bước 3. Kết luận về các khoảng đồng biến và nghịch biến của hàm số.
*Lý thuyết:
- Định nghĩa:
Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y = f(x) xác định trên K. Ta nói:
Hàm số y = f(x) đồng biến (tăng) trên K nếu với mọi cặp x1; x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) nhỏ hơn f(x2), tức là
x1 < x2 f(x1) < f(x2).
Hàm số y = f(x) nghịch biến (giảm) trên K nếu với mọi cặp x1; x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) lớn hơn f(x2), tức là
x1 < x2 f(x1) > f(x2).
- Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.
- Nhận xét: Từ định nghĩa trên ta thấy:
a) f(x) đồng biến trên K
f(x) nghịch biến trên K
b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải.
Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải.
2. Tính đơn điệu và dấu của đạo hàm
- Định lí:
Cho hàm số y = f(x) có đạo hàm trên K.
a) Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.
b) Nếu f’(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.
- Chú ý:
Nếu f’(x) = 0 với thì f(x) không đổi trên K.
- Chú ý:
Ta có định lí mở rộng sau đây:
Giả sử hàm số y = f(x) có đạo hàm trên K. Nếu
Và f’(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K.
Xem thêm
Lý thuyết Sự đồng biến, nghịch biến của hàm số (mới 2 + Bài Tập) – Toán 12
Câu 11:
11/07/2024Hướng dẫn giải:
Đáp án đúng là: D.
Xét hàm số y = –x2 + 4x – 3 có a = –1 < 0, b = 4, c = –3
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.( - 1)}} = 2\); \(\frac{{ - \Delta }}{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{4^2} - 4.( - 1).( - 3)}}{{4.( - 1)}} = 1\).
Do đó, hàm số đồng biến trên khoảng (–∞; 2), nghịch biến trên khoảng (2; +∞).
Bảng biến thiên:
Câu 12:
20/07/2024Đâu là bảng biến thiên của hàm số y = x2 + 6x – 5 ?
Hướng dẫn giải:
Đáp án đúng là: C.
Xét hàm số y = x2 + 6x – 5 có a = 1 > 0, b = 6, c = –5
Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.1}} = - 3\); \(\frac{{ - \Delta }}{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{6^2} - 4.1.( - 5)}}{{4.1}} = - 14\).
Do đó, hàm số nghịch biến trên khoảng (–∞; –3), đồng biến trên khoảng (–3; +∞)
Bảng biến thiên:
Bài thi liên quan
-
Dạng 1: Hàm số bậc hai. Xác định hàm số bậc hai có đáp án
-
14 câu hỏi
-
45 phút
-
-
Dạng 2: Tìm điều kiện của m để hàm số là hàm số bậc hai có đáp án
-
12 câu hỏi
-
45 phút
-
-
Dạng 3: Xác định hệ số a, b, c khi biết các tính chất của hàm số bậc hai có đáp án
-
12 câu hỏi
-
45 phút
-
-
Dạng 5: Cách vẽ và xác định đồ thị hàm số bậc hai có đáp án
-
12 câu hỏi
-
45 phút
-
-
Dạng 6: Tìm công thức của hàm số bậc hai khi biết đồ thị hàm số có đáp án
-
12 câu hỏi
-
45 phút
-
-
Dạng 7: Tìm giá trị lớn nhất, nhỏ nhất của hàm số bậc hai có đáp án
-
12 câu hỏi
-
45 phút
-
-
Dạng 8: Xác định giá trị của m để hàm số bậc hai đạt giá trị nhỏ nhất, lớn nhất tại một số cho trước có đáp án
-
12 câu hỏi
-
45 phút
-
-
Dạng 9: Ứng dụng của hàm số bậc hai để giải bài toán thực tế có đáp án
-
12 câu hỏi
-
45 phút
-
Có thể bạn quan tâm
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Hàm số và đồ thị có đáp án (806 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án (2388 lượt thi)
Các bài thi hot trong chương
- Thi Online Trắc nghiệm Toán 10 CTST Bài 4. Tích vô hướng của hai vectơ có đáp án (2310 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1: Mệnh đề có đáp án (1265 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án (1107 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2: Tìm tổng của hai hay nhiều vectơ có đáp án (1047 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Số gần đúng và sai số có đáp án (977 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Tích của một số với một vectơ có đáp án (973 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2: Tập hợp có đáp án (782 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Định lý côsin và định lý sin có đáp án (735 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2: Hệ bất phương trình bậc nhất hai ẩn có đáp án (733 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Các số đặc trưng đo xu thế trung tâm của mẫu số liệu có đáp án (726 lượt thi)