Trang chủ Lớp 10 Toán Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án

Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án

Dạng 5: Cách vẽ và xác định đồ thị hàm số bậc hai có đáp án

  • 2392 lượt thi

  • 12 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

16/07/2024
Vẽ đồ thị hàm số: y = f(x) = –x2 + 4x – 3.
Xem đáp án

Hướng dẫn giải:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 + 4x – 3 là một parabol (P):

– Có đỉnh S với hoành độ xS = 2, tung độ yS = 1;

– Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a = – 1 < 0;

– Cắt trục tung tại điểm có tung độ bằng –3, tức là đồ thị đi qua điểm có tọa độ (0; –3);

Ngoài ra, phương trình –x2 + 4x – 3 = 0 có hai nghiệm phân biệt x1 = 1 và x2 = 3 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (1; 0) và (3; 0).

Ta vẽ được đồ thị.

Media VietJack


Câu 2:

18/07/2024
Vẽ đồ thị hàm số y = f(x) = x2 + 2x + 2.
Xem đáp án

Hướng dẫn giải:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 + 2x + 2 là một parabol (P):

– Có đỉnh S với hoành độ x = –1, tung độ y= 1;

– Có trục đối xứng là đường thẳng x = –1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay lên trên vì a = 1 > 0;

– Cắt trục tung tại điểm có tung độ bằng 2, tức là đồ thị đi qua điểm có tọa độ (0; 2);

Ta vẽ được đồ thị

Media VietJack


Câu 3:

12/07/2024

Đồ thị của hàm số y = x2 – 4x + 3 là parabol có tọa độ đỉnh là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Xét hàm số y = x2 – 4x + 3 có a = 1, b = –4, c = 3. Đỉnh của parabol có:

Hoành độ: \(\frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2\)

Tung độ: \(\frac{{ - \Delta }}{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{{( - 4)}^2} - 4.1.3}}{{4.1}} = - 1\).

Do đó, parabol có tọa độ đỉnh là: (2; –1).


Câu 4:

12/07/2024

Đồ thị của hàm số y = 2x2 + 8x + 1 là parabol có trục đối xứng là:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Xét hàm số y = 2x2 + 8x + 1 có a = 2, b = 8, c = 1 có trục đối xứng là đường thẳng :

\(x = \frac{{ - b}}{{2a}} = \frac{{ - 8}}{{2.2}} = - 2\).


Câu 5:

05/11/2024

Đồ thị hàm số y = x2 – 4x + 3 là:

Xem đáp án

Đáp án đúng là: C.

Lời giải

Xét hàm số y = f(x) = x2 – 4x + 3, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 – 4x + 3 là một parabol (P):

– Có đỉnh S với hoành độ xS = 2, tung độ y = – 1;

– Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay lên trên vì a = 1 > 0;

– Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3);

– Ngoài ra, phương trình x2 – 4x + 3 = 0 có hai nghiệm phân biệt x1 = 1 và x2 = 3 nên đồ thị hàm số cắt trục hành tại hai điểm có tọa độ (1; 0) và (3; 0).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

*Phương pháp giải:

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Lập bảng giá trị (thường từ 3 đến 4 giá trị) tương ứng giữa x và y sao cho các điểm tương ứng nằm bên phải trục Oy.

Bước 3: Vẽ trục tọa độ Oxy và đánh dấu điểm O, các điểm đã lập trong bảng giá trị và các điểm đối xứng với chúng qua trục Oy.

Bước 4: Đồ thị hàm số y = ax2 (a ≠ 0) luôn đi qua gốc tọa độ O và nhận trục Oy làm trục đối xứng. Vẽ đường cong parabol đi qua các điểm đã đánh dấu ta được đồ thị hàm số y = ax2 (a ≠ 0) và kết luận.

*Lý thuyết:

- Đồ thị của hàm số: Đồ thị của hàm số y = ax2 (a ≠ 0) là một parabol đi qua gốc tọa độ O, nhận Oy làm trục đối xứng (O là đỉnh của parabol)

+) Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.

+) Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.

Xem thêm

Các dạng bài tập Đồ thị hàm số y = a.x^2 (có đáp án 2024) và cách giải - Toán 9 

Câu 6:

22/07/2024

Đồ thị hàm số y = 2x2 + 4x – 1 là hình:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số y = 2x2 + 4x – 1, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 + 4x – 1 là một parabol (P):

– Có đỉnh S với hoành độ xS = –1, tung độ y = –3;

– Có trục đối xứng là đường thẳng x = –1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay lên trên vì a = 2 > 0;

– Cắt trục tung tại điểm có tung độ bằng –1, tức là đồ thị đi qua điểm có tọa độ (0; –1).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Câu 7:

22/07/2024

Đồ thị hàm số y = – x2 + 2x + 3 là hình:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Xét hàm số y = –x2 + 2x + 3, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 + 2x + 3 là một parabol (P):

– Có đỉnh S với hoành độ xS = 1, tung độ y = 4;

– Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a = – 1 < 0;

– Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3);

– Ngoài ra, phương trình –x2 + 2x + 3 = 0 có hai nghiệm phân biệt là x1 = –1, x2 = 3. Do đó, đồ thị còn đi qua hai điểm (–1; 0), (3; 0).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Câu 8:

11/07/2024

Hình nào dưới đây là đồ thị của hàm số y = –3x2 + 6x ?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Xét hàm số y = –3x2 + 6x, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –3x2 + 6x là một parabol (P):

– Có đỉnh S với hoành độ xS = 1, tung độ y = 3;

– Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a = – 3 < 0;

– Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua điểm có tọa độ (0; 0);

– Ngoài ra, phương trình –3x2 + 6x = 0 có hai nghiệm phân biệt là x1 = 0, x2 = 2. Do đó, đồ thị còn đi qua điểm (2; 0).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Câu 9:

20/07/2024

Hình nào dưới đây là đồ thị của hàm số y = 2x2 – 5 ?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số y = 2x2 – 5, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 – 5 là một parabol (P):

– Có đỉnh S với hoành độ xS = 0, tung độ y = –5;

– Có trục đối xứng là đường thẳng x = 0 (đường thẳng này chính là trục Oy);

– Bề lõm hướng lên trên vì a = 2 > 0;

– Ngoài ra, đồ thị hàm số y = 2x2 – 5 còn đi qua hai điểm (2; 3) và (–2; 3).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Câu 10:

12/07/2024

Đồ thị của hàm số y = –x2 – 4x + 5 nằm trong hình:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Xét hàm số y = –x2 – 4x + 5, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 – 4x + 5 là một parabol (P):

– Có đỉnh S với hoành độ xS = –2, tung độ y = 9;

– Có trục đối xứng là đường thẳng x = –2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a = – 1 < 0;

– Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5);

– Ngoài ra, phương trình –x2 – 4x + 5 = 0 có hai nghiệm phân biệt là x1 = –5, x2 = 1. Do đó, đồ thị còn đi qua hai điểm (–5; 0), (1; 0).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Câu 11:

21/07/2024

Vẽ đồ thị hàm số y = x2 – 4x + 5 ta được hình vẽ:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng: C.

Xét hàm số y = x2 – 4x + 5, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 – 4x + 5 là một parabol (P):

– Có đỉnh S với hoành độ xS = 2, tung độ y = 1;

– Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay lên trên vì a = 1 > 0;

– Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5);

– Điểm đối xứng với điểm (0; 5) qua trục đối xứng x = 2 là điểm (4; 5).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Câu 12:

15/07/2024

Vẽ đồ thị hàm số y = –x2 – 2x – 1 ta được hình vẽ:

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Xét hàm số y = –x2 – 2x – 1, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 – 2x – 1 là một parabol (P):

– Có đỉnh S với hoành độ xS = –1, tung độ y = 0;

– Có trục đối xứng là đường thẳng x = –1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a = – 1 < 0;

– Cắt trục tung tại điểm có tung độ bằng –1, tức là đồ thị đi qua điểm có tọa độ (0; –1);

– Ngoài ra, đồ thị hàm số y = –x2 – 2x – 1 còn đi qua hai điểm (–3; –4) và (1; –4).

Ta vẽ được đồ thị như hình dưới:

Media VietJack

Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương