Trang chủ Lớp 10 Toán Thi Online Trắc nghiệm Toán 10 Bài 19. Phương trình đường thẳng có đáp án

Thi Online Trắc nghiệm Toán 10 Bài 19. Phương trình đường thẳng có đáp án

Trắc nghiệm Toán 10 Bài 19. Phương trình đường thẳng có đáp án

  • 356 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

05/11/2024

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

Xem đáp án

Đáp án đúng là: A

Lời giải

Trục Ox: y = 0 có VTCP \[\vec i\left( {1;0} \right)\] nên một đường thẳng song song với Ox có vectơ chỉ phương là vectơ cùng phương với vectơ \[\vec i\left( {1;0} \right)\].

*Phương pháp giải:

- Cho đường thẳng Δ đi qua hai điểm A và B có: AB là vectơ chỉ phương của 

- Cho u là vectơ chỉ phương của Δ  ku (k0)  là vectơ chỉ phương của .

- Cho đường thẳng Δ : x=x0+u1ty=y0+u2t Vectơ chỉ phương của  là u=(u1;u2)

- Cho đường thẳng Δ có vectơ pháp tuyến n=(a;b) thì đường thẳng đó có các vectơ chỉ phương là u=(b;a) u'=(b;a)

- Cho đường thẳng d  và d’. Biết dd': Nếu d’ có vectơ pháp tuyến n'=(a;b) thì vectơ chỉ phương của d là u=(a;b)

- Cho đường thẳng d và d’. Biết d // d’ : Nếu d’ có vectơ pháp tuyến n'=(a;b) thì vectơ chỉ phương của d là u=(b;a),u=(b;a)

 

*Lý thuyết:

- Định nghĩa vectơ chỉ phương: Vectơ u (u0) là vectơ chỉ phương của đường thẳng Δ nếu giá của vectơ u song song hoặc trùng với đường thẳng Δ.

- Chú ý:

+ Nếu u là vectơ chỉ phương của Δ thì ku (k0)  cũng là vectơ chỉ phương của .

+ Nếu đường thẳng Δ có vectơ pháp tuyến n=(a;b) thì đường thẳng đó có các vectơ chỉ phương là u=(b;a) u'=(b;a)

Xem thêm

Công thức xác định vectơ chỉ phương của đường thẳng hay, chi tiết nhất - Toán lớp 10 

TOP 40 câu Trắc nghiệm Phương trình đường thẳng trong không gian (có đáp án 2024) - Toán 12 

 


Câu 2:

05/11/2024

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Oy?

Xem đáp án

Đáp án đúng là: B

LỜi giải

Trục Oy: x = 0 có VTCP \[\vec j\left( {0;1} \right)\] nên một đường thẳng song song với Oy có VTCP là vectơ cùng phương với vectơ \[\vec j\left( {0;1} \right)\].

*Phương pháp giải:

 Cho đường thẳng Δ đi qua hai điểm A và B có: AB là vectơ chỉ phương của 

- Cho u là vectơ chỉ phương của Δ  ku (k0)  là vectơ chỉ phương của .

- Cho đường thẳng Δ : x=x0+u1ty=y0+u2t Vectơ chỉ phương của  là u=(u1;u2)

- Cho đường thẳng Δ có vectơ pháp tuyến n=(a;b) thì đường thẳng đó có các vectơ chỉ phương là u=(b;a) u'=(b;a)

- Cho đường thẳng d  và d’. Biết dd': Nếu d’ có vectơ pháp tuyến n'=(a;b) thì vectơ chỉ phương của d là u=(a;b)

- Cho đường thẳng d và d’. Biết d // d’ : Nếu d’ có vectơ pháp tuyến n'=(a;b) thì vectơ chỉ phương của d là u=(b;a),u=(b;a)

 

*Lý thuyết:

- Định nghĩa vectơ chỉ phương: Vectơ u (u0) là vectơ chỉ phương của đường thẳng Δ nếu giá của vectơ u song song hoặc trùng với đường thẳng Δ.

- Chú ý:

+ Nếu u là vectơ chỉ phương của Δ thì ku (k0)  cũng là vectơ chỉ phương của .

+ Nếu đường thẳng Δ có vectơ pháp tuyến n=(a;b) thì đường thẳng đó có các vectơ chỉ phương là u=(b;a) u'=(b;a)

Xem thêm

Công thức xác định vectơ chỉ phương của đường thẳng hay, chi tiết nhất - Toán lớp 10 

TOP 40 câu Trắc nghiệm Phương trình đường thẳng trong không gian (có đáp án 2024) - Toán 12 

 

Câu 3:

22/07/2024

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(-3; 2) và B(1; 4).

Xem đáp án

Đáp án đúng là: B

Đường thẳng đi qua hai điểm A(-3; 2) và B(1; 4) có VTCP là:

\[\overrightarrow {AB} = \left( {1 - ( - 3);4 - 2} \right)\]= (4; 2) hay \[\vec u\left( {2;1} \right)\].


Câu 4:

22/07/2024

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

Xem đáp án

Đáp án đúng là: B

Ta có: \[\overrightarrow {OM} = \left( {a;b} \right)\]\[ \Rightarrow \] đường thẳng OM có VTCP: \[\vec u = \overrightarrow {OM} = \left( {a;b} \right).\]


Câu 5:

21/07/2024

Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0) và B(0; b)?

Xem đáp án

Đáp án đúng là: C

Ta có: \[\overrightarrow {AB} = \left( { - a;b} \right)\]\[ \Rightarrow \] đường thẳng AB có VTPT là: \[\overrightarrow {{n_3}} = \left( {b;a} \right)\].


Câu 6:

27/08/2024

Một đường thẳng có bao nhiêu vectơ chỉ phương?

Xem đáp án

Đáp án D

Một đường thẳng có vô số vectơ chỉ phương

Giải thích:

Giả sử ta có đường thẳng (d)

Một vector u được gọi là VTCP của một đường thằng nếu giá của vector u song song hoặc trùng với đường thẳng (d).

Mà có vô số đường thẳng song song với (d)

Vậy cũng có vô số vector chỉ phương của đường thẳng (d)


Câu 7:

21/07/2024

Đường thẳng d đi qua điểm M(1; -2) và có vectơ chỉ phương \[\overrightarrow u = \left( {3;5} \right)\] có phương trình tham số là:

Xem đáp án

Đáp án đúng là: B

Ta có: \[\left\{ \begin{array}{l}M\left( {1; - 2} \right) \in d\\{{\vec u}_d} = \left( {3;5} \right)\end{array} \right.\]

Phương trình tham số \[d:\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 + 5t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right).\]


Câu 8:

22/07/2024

Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là:

Xem đáp án

Đáp án đúng là: C

Đường thẳng d cần tìm song song với đường thẳng – x + 2y + 3 = 0 nên có VTCP là: \[\overrightarrow u = \left( { - 1;2} \right)\].

Do đó phương trình tham số của đường thẳng d đi qua gốc tọa độ và nhận \[\overrightarrow u = \left( { - 1;2} \right)\] làm vectơ chỉ phương là: \[\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right).\]


Câu 9:

12/07/2024

Đường thẳng nào dưới đây đi qua điểm M(1; -1).

Xem đáp án

Đáp án đúng là: A.

Thay tọa độ điểm M lần lượt vào các phương trình đường thẳng, ta thấy:

+) \[{d_1}:\left\{ \begin{array}{l}1 = 3 + 2t\\ - 1 = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = - 1\end{array} \right.\] (luôn đúng). Do đó điểm M thuộc đường thẳng d1.

+) \[{d_2}:\left\{ \begin{array}{l}1 = - t\\ - 1 = - 2 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = \frac{1}{3}\end{array} \right.\](vô lí). Do đó điểm M không thuộc đường thẳng d2.

+) \[{d_3}:\left\{ \begin{array}{l}1 = 3 + t\\ - 1 = - 2t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 2\\t = \frac{1}{2}\end{array} \right.\](vô lí). Do đó điểm M không thuộc đường thẳng d3.

+) \[{d_4}:\left\{ \begin{array}{l}1 = 3t\\ - 1 = - 2\end{array} \right.\](vô lí). Do đó điểm M không thuộc đường thẳng d4.

Vậy điểm M thuộc vào đường thẳng d1.


Câu 10:

05/11/2024

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \[d:\left\{ \begin{array}{l}x = 2\\y = - 1 + 6t\end{array} \right.\]?

Xem đáp án

Đáp án đúng là: D

Lời giải

Ta có: \[d:\left\{ \begin{array}{l}x = 2\\y = - 1 + 6t\end{array} \right.\]

Vectơ chỉ phương \[\vec u = \left( {0;6} \right) = 6\left( {0;1} \right)\] hay chọn \[\vec u = \left( {0;1} \right).\]

*Phương pháp giải:

- Cho đường thẳng Δ đi qua hai điểm A và B có: AB là vectơ chỉ phương của 

- Cho u là vectơ chỉ phương của Δ  ku (k0)  là vectơ chỉ phương của .

- Cho đường thẳng Δ : x=x0+u1ty=y0+u2t Vectơ chỉ phương của  là u=(u1;u2)

- Cho đường thẳng Δ có vectơ pháp tuyến n=(a;b) thì đường thẳng đó có các vectơ chỉ phương là u=(b;a) u'=(b;a)

- Cho đường thẳng d  và d’. Biết dd': Nếu d’ có vectơ pháp tuyến n'=(a;b) thì vectơ chỉ phương của d là u=(a;b)

- Cho đường thẳng d và d’. Biết d // d’ : Nếu d’ có vectơ pháp tuyến n'=(a;b) thì vectơ chỉ phương của d là u=(b;a),u=(b;a)

 

*Lý thuyết:

- Định nghĩa vectơ chỉ phương: Vectơ u (u0) là vectơ chỉ phương của đường thẳng Δ nếu giá của vectơ u song song hoặc trùng với đường thẳng Δ.

- Chú ý:

+ Nếu u là vectơ chỉ phương của Δ thì ku (k0)  cũng là vectơ chỉ phương của .

+ Nếu đường thẳng Δ có vectơ pháp tuyến n=(a;b) thì đường thẳng đó có các vectơ chỉ phương là u=(b;a) u'=(b;a)

Xem thêm

Công thức xác định vectơ chỉ phương của đường thẳng hay, chi tiết nhất - Toán lớp 10 

TOP 40 câu Trắc nghiệm Phương trình đường thẳng trong không gian (có đáp án 2024) - Toán 12 

 
 

Câu 11:

16/07/2024

Viết phương trình tổng quát của đường thẳng d đi qua điểm M(-1; 2) và song song với trục Ox?

Xem đáp án

Đáp án đúng là : D

Ta có: \[d||Ox:y = 0\]\[ \Rightarrow \] đường thẳng d có dạng y = b, mặt khác \[M\left( { - 1;2} \right) \in d\] suy ra :

b = 2 hay y = 2.


Câu 12:

19/07/2024

Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?

Xem đáp án

Đáp ứng đúng là: B

Ta có: \[d \bot Oy:x = 0 \to {\vec u_d} = \left( {1;0} \right)\], mặt khác \[M\left( {6; - 10} \right) \in d\]

Phương trình tham số \[d:\left\{ \begin{array}{l}x = 6 + t\\y = - 10\end{array} \right.\], với t = -4 ta được \[d:\left\{ \begin{array}{l}x = 2\\y = - 10\end{array} \right.\]

hay A (2; -10) \[ \in \]d \[ \to d:\left\{ \begin{array}{l}x = 2 + t\\y = - 10\end{array} \right.\].


Câu 13:

19/07/2024

Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:

Xem đáp án

Đáp án đúng là : D

Ta có: Vectơ chỉ phương của AB là \[{\vec u_{AB}} = \overrightarrow {AB} = \left( { - 2;6} \right) \to {\vec n_{AB}} = \left( {3;1} \right)\] là vectơ pháp tuyến của đường thẳng qua hai điểm A, B.

Mặt khác A (3; -1) \[ \in AB\], suy ra: \[AB:3\left( {x - 3} \right) + 1\left( {y + 1} \right) = 0\] hay \[AB:3x + y - 8 = 0\].


Câu 14:

22/07/2024

Phương trình đường thẳng cắt hai trục tọa độ tại A(-2 ; 0) và B(0 ; 3) là:

Xem đáp án

Đáp án đúng là : B

Ta có: \[\left\{ \begin{array}{l}A\left( { - 2;0} \right) \in Ox\\B\left( {0;3} \right) \in Oy\end{array} \right.\]\[ \Rightarrow \]Phương trình đường thẳng:\[\frac{x}{{ - 2}} + \frac{y}{3} = 1 \Leftrightarrow \]3x - 2y + 6 = 0


Câu 15:

16/07/2024

Phương trình tổng quát của đường thẳng đi qua hai điểm A(2 ; -1) và B(2 ; 5) là:

Xem đáp án

Đáp án đúng là: D

Ta có: Vectơ chỉ phương của AB : \[{\vec u_{AB}} = \overrightarrow {AB} = \left( {0;6} \right)\] \[ \Rightarrow \] Vectơ pháp tuyến của AB là \[{\vec n_{AB}} = \left( {1;0} \right)\], mặt khác \[A\left( {2; - 1} \right) \in AB\], suy ra:

Phương trình tổng quát đường thẳng: 1. (x - 2) + 0. (y + 1) = 0 hay x - 2 = 0.


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương