Giải bài tập trang 29 Chuyên đề Toán 10 Bài 1 - Chân trời sáng tạo

Với Giải bài tập trang 29 Chuyên đề Toán 10 trong Bài 1: Phương pháp quy nạp toán học sách Chuyên đề Toán lớp 10 Chân trời sáng tạo  hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 29.

1 6,108 20/07/2022


Giải bài tập trang 29 Chuyên đề Toán 10 Bài 1 - Chân trời sáng tạo

Thực hành 1 trang 29 Chuyên đề Toán 10: Chứng minh rằng đẳng thức sau đúng với mọi n*:

1+2+3++n=n(n+1)2.

Lời giải:

Bước 1. Với n = 1, ta có 1 = 11+12. Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có: 1+2+3++k=k(k+1)2.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+2+3++k+k+1=k+1(k+1)+12.

Sử dụng giả thiết quy nạp, ta có:

1+2+3+...+k+k+1=kk+12+2k+12=k+1k+22=k+1k+1+12.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

Thực hành 2 trang 29 Chuyên đề Toán 10:

Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên n ≥ 3: 2n + 1 > n2 + n + 2.

Lời giải:

Bước 1. Với n = 3, ta có 23 + 1 = 16 > 14 = 32 + 3 + 2. Do đó bất đẳng thức đúng với n = 3.

Bước 2. Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là có: 2k + 1 > k2 + k + 2.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

2(k +1) + 1 > (k + 1)2 + (k + 1) + 2.

Sử dụng giả thiết quy nạp, với lưu ý k ≥ 3, ta có:

2(k +1) + 1 = 2 . 2k + 1 > 2(k2 + k + 2) = 2k2 + 2k + 4 = k2 + k2 + 2k + 4 > k2 + k + 2k + 4

= (k2 + 2k + 1) + (k + 1) + 2 = (k + 1)2 + (k + 1) + 2.

Vậy bất đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi số tự nhiên n 3.

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải bài tập trang 27 Chuyên đề Toán 10 Bài 1

Giải bài tập trang 31 Chuyên đề Toán 10 Bài 1

Giải bài tập trang 32 Chuyên đề Toán 10 Bài 1

1 6,108 20/07/2022


Xem thêm các chương trình khác: