Giải bài tập trang 26, 27, 28 Chuyên đề Toán 10 Bài 3 - Kết nối tri thức

Với Giải bài tập trang 26, 27, 28 Chuyên đề Toán 10 trong Bài 3: Phương pháp quy nạp toán học sách Chuyên đề Toán lớp 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 26, 27, 28.

1 4,223 18/07/2022


Giải bài tập trang 26, 27, 28 Chuyên đề Toán 10 Bài 3 - Kết nối tri thức

HĐ1 trang 26 Chuyên đề Toán 10: Hãy quan sát các đẳng thức sau:

1 = 12

1 + 3 = 4 = 22

1 + 3 + 5 = 9 = 32

1 + 3 + 5 + 7 = 16 = 42

1 + 3 + 5 + 7 + 9 = 25 = 52

......

Có nhận xét gì về các số ở vế trái và ở vế phải của các đẳng thức trên? Từ đó hãy dự đoán công thức tính tổng của n số lẻ đầu tiên 1 + 3 + 5 + ... + (2n –1).

Lời giải:

Ta thấy vế trái của các đẳng thức lần lượt là tổng của 1, 2, 3, 4, 5, ... số lẻ đầu tiên. Còn vế phải lần lượt là bình phương của 1, 2, 3, 4, 5,...

Vậy ta có thể dự đoán 1 + 3 + 5 + ... + (2n –1) = n2.

HĐ2 trang 26 Chuyên đề Toán 10: Xét đa thức p(n) = n2 – n + 41.

a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.

b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

Lời giải:

a) p(1) = 41, p(2) = 43, p(3) = 47, p(4) = 53, p(5) = 61. Do đó p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố.

b) Từ việc p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố ta có thể đưa ra dự đoán p(n) là số nguyên tố với mọi n > 1. Tuy nhiên, khẳng định này là một khẳng định sai. Mặc dù khẳng định này đúng với n = 1, 2,..., 40, nhưng nó lại sai khi n= 41. Thật vậy, với n= 41 ta có p(41) = 412 là hợp số (vì nó chia hết cho 41).

Luyện tập 1 trang 27 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta có

1+2+3+...+n=nn+12. 

Lời giải:

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có 1 = 12.                                                              

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:                   

1+2+3+...+k=kk+12.                                                       

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:

1+2+3+...+k+k+1=k+1k+1+12.

Thật vậy, sử dụng giả thiết quy nạp ta có:

1+2+3+...+k+k+1

=kk+12+2k+12=k+1k+22=k+1k+1+12.

Vậy khẳng định đúng với mọi số tự nhiên n 1.

Luyện tập 2 trang 28 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức:

an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1).

Lời giải:

Bước 1. Khi n = 1, ta có: a1 – b1 = a – b.

Vậy khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:

ak – bk = (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1)

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:

ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1]

Thật vậy, sử dụng giả thiết quy nạp ta có:

ak + 1 – bk + 1

= a . ak – b . bk

= a . ak – a . bk + a . bk – b . bk

= a . (ak – bk) + bk . (a – b)

= a . (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + bk . (a – b)

= (a – b) . a . (ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + (a – b) . bk

= (a – b)(a . ak – 1 + a . ak – 2b + ... + a . abk – 2 + a . bk – 1) + (a – b) . bk

= (a – b)[a1 + (k – 1) + a1 + (k – 2)b + ... + a2bk – 2 + a . bk – 1) + (a – b) . bk

= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1

= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1].

Vậy khẳng định đúng với mọi số tự nhiên n 1.

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải bài tập trang 30 Chuyên đề Toán 10 Bài 3

1 4,223 18/07/2022


Xem thêm các chương trình khác: