Câu hỏi:
17/07/2024 2,053
Xét vị trí tương đối của 2 đường thẳng d1 : và d2 :
Xét vị trí tương đối của 2 đường thẳng d1 : và d2 :
A. Trùng nhau;
A. Trùng nhau;
B. Song song;
B. Song song;
C. Vuông góc ;
D. Cắt nhau nhưng không vuông góc.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đường thẳng d1 có và A(−3; 2) ∈ d1
Đường thẳng d2 có
Ta có: = −2. nên và là hai vectơ cùng phương . Do đó d1 và d2 song song hoặc trùng nhau.
Mặt khác, thay điểm A(−3; 2) vào phương trình đường thẳng d2 ta có: ⇒ ⇔ (không thoả mãn)
Do đó điểm A thuộc d1 nhưng không thuộc d2. Vậy d1 song song với d2
Hướng dẫn giải
Đáp án đúng là: B
Đường thẳng d1 có và A(−3; 2) ∈ d1
Đường thẳng d2 có
Ta có: = −2. nên và là hai vectơ cùng phương . Do đó d1 và d2 song song hoặc trùng nhau.
Mặt khác, thay điểm A(−3; 2) vào phương trình đường thẳng d2 ta có: ⇒ ⇔ (không thoả mãn)
Do đó điểm A thuộc d1 nhưng không thuộc d2. Vậy d1 song song với d2
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xét vị trí tương đối của hai đường thẳng ∆1 : 7x + 2y – 1 = 0 và ∆2 :
Xét vị trí tương đối của hai đường thẳng ∆1 : 7x + 2y – 1 = 0 và ∆2 :
Câu 2:
Cho đường thẳng d1 có vectơ chỉ phương là và đường thẳng d2 có vectơ chỉ phương là . Hai đường thẳng d1 và d2 song song hoặc trùng nhau khi:
Cho đường thẳng d1 có vectơ chỉ phương là và đường thẳng d2 có vectơ chỉ phương là . Hai đường thẳng d1 và d2 song song hoặc trùng nhau khi:
Câu 3:
Cho điểm A(x0; y0) và đường thẳng ∆: ax + by + c = 0. Khoảng cách từ A đến đường thẳng ∆ được cho bởi công thức:
Cho điểm A(x0; y0) và đường thẳng ∆: ax + by + c = 0. Khoảng cách từ A đến đường thẳng ∆ được cho bởi công thức:
Câu 4:
Cho α là góc tạo bởi hai đường thẳng d1: a1x + b1y + c1 = 0 và d2: a2x + b2y + c2 = 0. Khẳng định nào sau đây là đúng?
Cho α là góc tạo bởi hai đường thẳng d1: a1x + b1y + c1 = 0 và d2: a2x + b2y + c2 = 0. Khẳng định nào sau đây là đúng?