Câu hỏi:

20/07/2024 366

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(4; 1), B (7; 8). Tọa độ của điểm C là điểm đối xứng của A qua B là:

A. C(–4; 1);

B. C(4; –1);

C. C(–10; –17);

D. C(10; 17).

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Gọi C(xC; yC).

Ta có: \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right) = \left( {3;9} \right)\) và \(\overrightarrow {BC} = \left( {{x_C} - {x_B};{y_C} - {y_B}} \right) = \left( {{x_C} - 7;{y_C} - 8} \right)\).

Ta có C là điểm đối xứng của A qua B.

Suy ra B là trung điểm của AC.

Do đó \(\overrightarrow {AB} = \overrightarrow {BC} \).

\( \Leftrightarrow \left\{ \begin{array}{l}3 = {x_C} - 7\\9 = {y_C} - 8\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10\\{y_C} = 17\end{array} \right.\)

Suy ra tọa độ C(10; 17).

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trên mặt phẳng tọa độ Oxy, cho hai điểm A(1; –1), B(2; 4). Để tứ giác OBMA là hình bình hành thì tọa độ M là:

Xem đáp án » 23/07/2024 3,242

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có D(3; 4), E(6; 1), F(7; 3) lần lượt là trung điểm của các cạnh AB, BC, CA. Tổng tung độ ba đỉnh của tam giác ABC là:

Xem đáp án » 15/07/2024 1,709

Câu 3:

Cho \(\vec u = \left( {{m^2} + 3;2m} \right)\), \(\vec v = \left( {5m - 3;{m^2}} \right)\). Nếu \(\vec u = \vec v\) thì m thuộc tập hợp:

Xem đáp án » 20/07/2024 369

Câu 4:

Trong mặt phẳng tọa độ Oxy, cho ba điểm A(0; 1), B(1; 4), C( 6; 5) không thẳng hàng. Tọa độ điểm D thỏa mãn ACBD là hình thang có AC // BD và AC = 2BD là:

Xem đáp án » 17/07/2024 148

Câu hỏi mới nhất

Xem thêm »
Xem thêm »