Câu hỏi:

18/01/2025 9

Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;3;-4). Tính khoảng cách từ M đến trục Oy

A. 29

B. 3

C. 25

Đáp án chính xác

D. 2

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: C

*Lời giải: 

<p>Trong không gian với hệ tọa độ (Oxyz), cho điểm (Mleft( {2,;,3,;, - 4} right)). Tính khoảng cách từ (M) đến trục (Oy).</p> 1

Hình chiếu vuông góc của điểm M lên trục Oy là H(0;3;0)

Khoảng cách từ M đến Oy bằng: 

d(M,Oy) = MH = (0-2)2 + (3-3)0 +(0+4)2 = 25

*Phương pháp giải:

gọi hình chiếu của M lên oy. tính khoảng cách đoạn MH

*Lý thuyết cần nắm và các dạng bài toán về phương trình mặt phẳng:

Phương trình tổng quát của mặt phẳng

1. Định nghĩa.

- Phương trình có dạng Ax + By + Cz + D = 0 trong đó A; B; C không đồng thời bằng 0 , được gọi là phương trình tổng quát của mặt phẳng.

- Nhận xét.

a) Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một vecto pháp tuyến là n(A;B;C).

b) Phương trình mặt phẳng đi qua điểm M (x0; y0; z0) và nhận vectơ n(A;B;C) khác là vecto pháp tuyến là: A(x- x0 ) + B( y – y0) + C(z – z0) = 0.

2. Các trường hợp riêng

Trong không gian Oxyz, cho mặt phẳng (α) : Ax + By + Cz + D = 0.

a) Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.

Lý thuyết Phương trình mặt phẳng chi tiết – Toán lớp 12 (ảnh 1)

b)

- Nếu A=0,B0,C0 thì mặt phẳng (α) song song hoặc chứa trục Ox.

- Nếu A0,B=0,C0 thì mặt phẳng (α) song song hoặc chứa trục Oy.

- Nếu A0,B0,C=0 thì mặt phẳng (α) song song hoặc chứa trục Oz.

Lý thuyết Phương trình mặt phẳng chi tiết – Toán lớp 12 (ảnh 1)

c)

- Nếu A = B = 0; C0 thì mặt phẳng (α) song song hoặc trùng với (Oxy).

- Nếu A = C = 0; B0 thì mặt phẳng (α) song song hoặc trùng với (Oxz).

- Nếu B = C = 0; A0 thì mặt phẳng (α) song song hoặc trùng với (Oyz).

Lý thuyết Phương trình mặt phẳng chi tiết – Toán lớp 12 (ảnh 1)

Phương trình mặt phẳng theo đoạn chắn α:xa+yb+zc=1. Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0); (0; b; 0); (0; 0; c) với abc0.

Điều kiện để hai mặt phẳng song song, vuông góc.

Trong không gian Oxyz, cho hai mặt phẳng (α) và (β) có phương trình:

(α): A1x + B1y + C1z + D1 = 0

(β): A2x + B2y + C2z + D2 = 0

Hai mặt phẳng (α); (β) có hai vecto pháp tuyến lần lượt là: n1  (A;1  B1;C1);   n2  (A;2  B2;C2)

1. Điều kiện để hai mặt phẳng song song.

Lý thuyết Phương trình mặt phẳng chi tiết – Toán lớp 12 (ảnh 1)

Chú ý: Để (α) cắt (β)n1  k.n2(A1;B1;C1)k(A2;  B2;​​C2)

2. Điều kiện để hai mặt phẳng vuông góc.k(A2;  B2;​​C2)

(α)    (β)  n1  n2A1A2+​  B1B2+​  C1C2  =0

Khoảng cách từ một điểm đến một mặt phẳng.

Định lí: Trong không gian Oxyz, cho điểm M0(x0; y0; z0) và mặt phẳng (α): Ax + By + Cz + D = 0 .

Khi đó khoảng cách từ điểm M0 đến mặt phẳng (α) được tính:k(A2;  B2;​​C2)

d(M0,(α))=|Ax0+By0+Cz0+D|A2+B2+C2

Dạng 1: Xác định vectơ pháp tuyến của mặt phẳng

Phương pháp giải:

Cho mặt phẳng (α) có phương trình Ax + By + Cz + D = 0.k(A2;  B2;​​C2)

Khi đó mặt phẳng (α) có một VTPT là n=(A;B;C).

Dạng 2: Viết phương trình mặt phẳng khi đã biết một điểm đi qua và vectơ pháp tuyến

Phương pháp giải:

Cho mặt phẳng α đi qua điểm M0(x0;y0;z0) và nhận vectơ n=(A;B;C) làm vectơ pháp tuyến. Khi đó phương trình mặt phẳng α là: A(xx0)+B(yy0)+C(zz0)=0

Dạng 3: Viết phương trình mặt phẳng α đi qua điểm M và song song với mặt phẳng (P) cho trước.

Phương pháp giải:

+) Mặt phẳng α song song với mặt phẳng (P) cho trước nên vectơ pháp tuyến của mặt phẳng α chính là vectơ pháp tuyến của mặt phẳng (P).

+) Từ đó viết phương trình mặt phẳng α đi qua M và có vectơ pháp tuyến là nα=nP.

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Phương trình mặt phẳng (mới 2024 + Bài Tập) – Toán 12 

50 bài toán về phương trình mặt phẳng (có đáp án 2024) – Toán 12 

66 câu trắc nghiệm: Phương trình mặt phẳng có đáp án (P1) 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để giá trị nhỏ nhất của hàm số y=x3-3mx2+6 trên đoạn [0;3] bằng 2 .

Xem đáp án » 17/01/2025 11

Câu 2:

Cho hình chóp có 20 cạnh. Tính số mặt của hình chóp đó.

Xem đáp án » 18/01/2025 11

Câu 3:

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz)bằng

Xem đáp án » 18/01/2025 10

Câu 4:

tổng số mặt và số cạnh của hình chóp ngũ giác

Xem đáp án » 18/01/2025 10

Câu 5:

Tính thể tích khối tứ diện đều cạnh a.

Xem đáp án » 18/01/2025 10

Câu 6:

Tính độ dài đoạn thẳng AB biết rằng I là trung điểm của đoạn thẳng AB và AI = 8 cm.

Xem đáp án » 17/01/2025 10

Câu 7:

Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước a;  a3;  2a là:

Xem đáp án » 18/01/2025 10

Câu 8:

Tính thể tích V của khối hộp đứng có đáy là hình vuông cạnh a và độ dài cạnh bên bằng 2a.

Xem đáp án » 18/01/2025 9

Câu 9:

Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.

Xem đáp án » 17/01/2025 9

Câu 10:

Cho hàm số y=(m-1)x4-3mx2+5 . Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại mà không có cực tiểu

Xem đáp án » 19/01/2025 9

Câu 11:

Cho khối đa diện đều loại {3;4}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng

Xem đáp án » 18/01/2025 9

Câu 12:

Cho khối chữ nhật ABCD.A'B'C'D' có thể tích V. Mệnh đề nào sau đây đúng?

Xem đáp án » 18/01/2025 9

Câu 13:

Cho mặt cầu bán kính R ngoại tiếp một hình lập phương cạnh a. Mệnh đề nào dưới đây đúng ?

Xem đáp án » 18/01/2025 9

Câu 14:

Hàm số nào sau đây không liên tục tại x=2?

Xem đáp án » 18/01/2025 9

Câu 15:

Tính sin2a, cos2a, tan2a biết

Giải bài 5 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Xem đáp án » 19/01/2025 8