Câu hỏi:
18/01/2025 9Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;3;-4). Tính khoảng cách từ M đến trục Oy
A.
B. 3
C.
D. 2
Trả lời:
Đáp án đúng: C
*Lời giải:
Hình chiếu vuông góc của điểm M lên trục Oy là H(0;3;0)
Khoảng cách từ M đến Oy bằng:
*Phương pháp giải:
gọi hình chiếu của M lên oy. tính khoảng cách đoạn MH
*Lý thuyết cần nắm và các dạng bài toán về phương trình mặt phẳng:
Phương trình tổng quát của mặt phẳng
1. Định nghĩa.
- Phương trình có dạng Ax + By + Cz + D = 0 trong đó A; B; C không đồng thời bằng 0 , được gọi là phương trình tổng quát của mặt phẳng.
- Nhận xét.
a) Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một vecto pháp tuyến là .
b) Phương trình mặt phẳng đi qua điểm M (x0; y0; z0) và nhận vectơ khác là vecto pháp tuyến là: A(x- x0 ) + B( y – y0) + C(z – z0) = 0.
2. Các trường hợp riêng
Trong không gian Oxyz, cho mặt phẳng (α) : Ax + By + Cz + D = 0.
a) Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.
b)
- Nếu thì mặt phẳng (α) song song hoặc chứa trục Ox.
- Nếu thì mặt phẳng (α) song song hoặc chứa trục Oy.
- Nếu thì mặt phẳng (α) song song hoặc chứa trục Oz.
c)
- Nếu A = B = 0; thì mặt phẳng (α) song song hoặc trùng với (Oxy).
- Nếu A = C = 0; thì mặt phẳng (α) song song hoặc trùng với (Oxz).
- Nếu B = C = 0; thì mặt phẳng (α) song song hoặc trùng với (Oyz).
Phương trình mặt phẳng theo đoạn chắn . Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0); (0; b; 0); (0; 0; c) với .
Điều kiện để hai mặt phẳng song song, vuông góc.
Trong không gian Oxyz, cho hai mặt phẳng (α) và (β) có phương trình:
(α): A1x + B1y + C1z + D1 = 0
(β): A2x + B2y + C2z + D2 = 0
Hai mặt phẳng (α); (β) có hai vecto pháp tuyến lần lượt là:
1. Điều kiện để hai mặt phẳng song song.
- Chú ý: Để (α) cắt (β)
2. Điều kiện để hai mặt phẳng vuông góc.
Khoảng cách từ một điểm đến một mặt phẳng.
- Định lí: Trong không gian Oxyz, cho điểm M0(x0; y0; z0) và mặt phẳng (α): Ax + By + Cz + D = 0 .
Khi đó khoảng cách từ điểm M0 đến mặt phẳng (α) được tính:
Dạng 1: Xác định vectơ pháp tuyến của mặt phẳng
Phương pháp giải:
Cho mặt phẳng có phương trình Ax + By + Cz + D = 0.
Khi đó mặt phẳng có một VTPT là .
Dạng 2: Viết phương trình mặt phẳng khi đã biết một điểm đi qua và vectơ pháp tuyến
Phương pháp giải:
Cho mặt phẳng đi qua điểm và nhận vectơ làm vectơ pháp tuyến. Khi đó phương trình mặt phẳng là:
Dạng 3: Viết phương trình mặt phẳng đi qua điểm M và song song với mặt phẳng (P) cho trước.
Phương pháp giải:
+) Mặt phẳng song song với mặt phẳng (P) cho trước nên vectơ pháp tuyến của mặt phẳng chính là vectơ pháp tuyến của mặt phẳng (P).
+) Từ đó viết phương trình mặt phẳng đi qua M và có vectơ pháp tuyến là .
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Phương trình mặt phẳng (mới 2024 + Bài Tập) – Toán 12
50 bài toán về phương trình mặt phẳng (có đáp án 2024) – Toán 12
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Tính độ dài đoạn thẳng AB biết rằng I là trung điểm của đoạn thẳng AB và AI = 8 cm.
Câu 8:
Tính thể tích V của khối hộp đứng có đáy là hình vuông cạnh a và độ dài cạnh bên bằng .
Câu 9:
Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
Câu 10:
Cho hàm số . Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại mà không có cực tiểu
Câu 11:
Cho khối đa diện đều loại {3;4}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng
Câu 12:
Cho khối chữ nhật ABCD.A'B'C'D' có thể tích V. Mệnh đề nào sau đây đúng?
Câu 13:
Cho mặt cầu bán kính R ngoại tiếp một hình lập phương cạnh a. Mệnh đề nào dưới đây đúng ?