Câu hỏi:
18/01/2025 9Cho mặt cầu bán kính R ngoại tiếp một hình lập phương cạnh a. Mệnh đề nào dưới đây đúng ?
Trả lời:
*Lời giải:
*Phương pháp giải:
- Tính bán kính khối cầu
- Áp dụng công thức tính thể tích khối cầu để tính: S=4.pi.R2
Diện tích mặt cầu và thể tích khối cầu
Cho mặt cầu S(I; R).
Diện tích mặt cầu:
Thể tích khối cầu:
Dạng 1: Mặt cầu ngoại tiếp hình chóp
* Phương pháp giải:
- Xác định trục d của đường tròn ngoại tiếp đa giác đáy (d là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy).
- Xác định mặt phẳng trung trực (P) của một cạnh bên (hoặc trục ∆ của đường tròn ngoại tiếp một đa giác của mặt bên).
- Giao điểm I của (P) và d (hoặc của ∆ và d) là tâm mặt cầu ngoại tiếp.
- Kết luận: I là tâm mặt cầu ngoại tiếp chóp.
Dạng 1.1: Hình chóp có các điểm cùng nhìn một cạnh của hình chóp dưới một góc vuông.
+) Hình chóp tam giác:
A, B cùng nhìn SC dưới một góc vuông
Tâm mặt cầu ngoại tiếp hình chóp S.ABC là trung điểm I của SC
Bán kính là:
+) Hình chóp tứ giác
A, B, D cùng nhìn SC dưới một góc vuông
Tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm J của SC
Bán kính mặt cầu là:
Dạng 1.2: Hình chóp có mặt bên vuông góc với mặt phẳng đáy
* Phương pháp giải: Gọi h là chiều cao hình chóp và là bán kính của đường tròn ngoại tiếp mặt bên, mặt đáy và là độ dài cạnh chung của mặt bên vuông góc với đáy thì bán kính mặt cầu là:
Dạng 1.3: Mặt cầu nội tiếp khối đa diện
* Phương pháp giải: Nếu đặt V là thể tích khối chóp và là tổng diện tích mặt đáy và các mặt bên của chóp thì bán kính r của mặt cầu nội tiếp khối chóp:
Xem thêm các bài viết liên quan hay, chi tiết
Các bài toán thực tế hình không gian (có đáp án)
Phương trình mặt cầu (lý thuyết và cách giải các dạng bài tập)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
Cho khối chữ nhật ABCD.A'B'C'D' có thể tích V. Mệnh đề nào sau đây đúng?
Câu 8:
Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
Câu 9:
Tính độ dài đoạn thẳng AB biết rằng I là trung điểm của đoạn thẳng AB và AI = 8 cm.
Câu 10:
Cho hàm số . Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại mà không có cực tiểu
Câu 11:
Cho khối đa diện đều loại {3;4}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng
Câu 14:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;3;-4). Tính khoảng cách từ M đến trục Oy
Câu 15:
Tính thể tích V của khối hộp đứng có đáy là hình vuông cạnh a và độ dài cạnh bên bằng .