Câu hỏi:
15/07/2024 372
Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình \[\left\{ {\begin{array}{*{20}{c}}{x + y - 2 \le 0}\\{2x - 3y + 2 > 0}\end{array}} \right.\].
Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình \[\left\{ {\begin{array}{*{20}{c}}{x + y - 2 \le 0}\\{2x - 3y + 2 > 0}\end{array}} \right.\].
A. (0; 0);
A. (0; 0);
B. (1; 1);
B. (1; 1);
C. (– 1; 1);
C. (– 1; 1);
D. (– 1; – 1).
D. (– 1; – 1).
Trả lời:
Đáp án đúng là: C
Lần lượt thay các cặp số vào các bất phương trình của hệ bất phương trình đã cho, cặp số nào không thỏa mãn hệ thì cặp số đó không là nghiệm của hệ đã cho.
+) Với cặp số (0; 0), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{0 + 0 - 2 \le 0}\\{2.0 - 3.0 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\2 > 0\end{array} \right.\) (luôn đúng). Vậy (0; 0) là nghiệm của hệ bất phương trình đã cho.
+) Với cặp số (1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{1 + 1 - 2 \le 0}\\{2.1 - 3.1 + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}0 \le 0\\1 > 0\end{array} \right.\] (luôn đúng). Vậy (1; 1) là nghiệm của hệ bất phương trình đã cho.
+) Với cặp số (– 1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + 1 - 2 \le 0}\\{2.\left( { - 1} \right) - 3.1 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\ - 3 > 0\end{array} \right.\) (vô lý). Vậy (– 1; 1) không là nghiệm của hệ bất phương trình đã cho.
+) Với cặp số (– 1; – 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + \left( { - 1} \right) - 2 \le 0}\\{2.\left( { - 1} \right) - 3.\left( { - 1} \right) + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 4 \le 0\\3 > 0\end{array} \right.\] (luôn đúng). Vậy (– 1; – 1) là nghiệm của hệ bất phương trình đã cho.
Đáp án đúng là: C
Lần lượt thay các cặp số vào các bất phương trình của hệ bất phương trình đã cho, cặp số nào không thỏa mãn hệ thì cặp số đó không là nghiệm của hệ đã cho.
+) Với cặp số (0; 0), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{0 + 0 - 2 \le 0}\\{2.0 - 3.0 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\2 > 0\end{array} \right.\) (luôn đúng). Vậy (0; 0) là nghiệm của hệ bất phương trình đã cho.
+) Với cặp số (1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{1 + 1 - 2 \le 0}\\{2.1 - 3.1 + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}0 \le 0\\1 > 0\end{array} \right.\] (luôn đúng). Vậy (1; 1) là nghiệm của hệ bất phương trình đã cho.
+) Với cặp số (– 1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + 1 - 2 \le 0}\\{2.\left( { - 1} \right) - 3.1 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\ - 3 > 0\end{array} \right.\) (vô lý). Vậy (– 1; 1) không là nghiệm của hệ bất phương trình đã cho.
+) Với cặp số (– 1; – 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + \left( { - 1} \right) - 2 \le 0}\\{2.\left( { - 1} \right) - 3.\left( { - 1} \right) + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 4 \le 0\\3 > 0\end{array} \right.\] (luôn đúng). Vậy (– 1; – 1) là nghiệm của hệ bất phương trình đã cho.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Câu 3:
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; 1), B(1; 10) và điểm C(m; 2m – 17). Tất cả các giá trị của tham số m sao cho AB vuông góc với OC là
Câu 4:
Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ \(\overrightarrow {OB} \) cùng phương với vectơ nào sau đây?
Cho lục giác đều ABCDEF tâm O như hình vẽ bên. Vectơ \(\overrightarrow {OB} \) cùng phương với vectơ nào sau đây?
Câu 5:
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?
Câu 6:
Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20
41
41
80
40
52
52
52
60
55
60
60
62
60
55
60
55
90
70
35
40
30
30
80
25
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Một cảnh sát giao thông ghi lại tốc độ (đơn vị: km/h) của 25 xe qua trạm như sau:
20 |
41 |
41 |
80 |
40 |
52 |
52 |
52 |
60 |
55 |
60 |
60 |
62 |
60 |
55 |
60 |
55 |
90 |
70 |
35 |
40 |
30 |
30 |
80 |
25 |
|
Tìm các số liệu bất thường (nếu có) trong mẫu số liệu trên.
Câu 8:
Miền nghiệm của bất phương trình 2x – y + 6 ≤ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
Miền nghiệm của bất phương trình 2x – y + 6 ≤ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
Câu 9:
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
Câu 10:
Một lực \(\overrightarrow F \) có độ lớn \(60\sqrt 3 \) N tác động vào điểm M làm vật di chuyển theo phương nằm ngang từ M đến điểm N cách M một khoảng 10 m. Biết góc giữa \(\overrightarrow F \) và phương thẳng đứng là 30°. Tính công sinh bởi lực F.
Một lực \(\overrightarrow F \) có độ lớn \(60\sqrt 3 \) N tác động vào điểm M làm vật di chuyển theo phương nằm ngang từ M đến điểm N cách M một khoảng 10 m. Biết góc giữa \(\overrightarrow F \) và phương thẳng đứng là 30°. Tính công sinh bởi lực F.
Câu 11:
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?
Câu 12:
Cho tam giác ABC có: AB = 3, BC = 4, AC = 5. Tính \(\overrightarrow {BA} .\overrightarrow {BC} \).
Cho tam giác ABC có: AB = 3, BC = 4, AC = 5. Tính \(\overrightarrow {BA} .\overrightarrow {BC} \).
Câu 13:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = - 2\overrightarrow i + \overrightarrow j \). Tìm tọa độ của vectơ \(\overrightarrow u \).
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = - 2\overrightarrow i + \overrightarrow j \). Tìm tọa độ của vectơ \(\overrightarrow u \).
Câu 14:
Cho các tập hợp A = {x ∈ ℝ| – 5 ≤ x < 1} và B = {x ∈ ℝ| – 3 < x ≤ 3}. Tìm tập hợp A ∪ B.
Cho các tập hợp A = {x ∈ ℝ| – 5 ≤ x < 1} và B = {x ∈ ℝ| – 3 < x ≤ 3}. Tìm tập hợp A ∪ B.
Câu 15:
Cho mẫu số liệu sau:
12; 5; 8; 11; 6; 20; 22.
Tính khoảng biến thiên của mẫu số liệu trên.
Cho mẫu số liệu sau:
12; 5; 8; 11; 6; 20; 22.
Tính khoảng biến thiên của mẫu số liệu trên.