Câu hỏi:
16/12/2024 1,539Tập xác định của hàm số là:
A. ;
B. ;
C. ;
D. .
Trả lời:
Đáp án đúng là: C
Lời giải
Điều kiện xác định của hàm số là:
với
với
với
Vậy tập xác định của hàm số là .
*Phương pháp giải:
Hàm phân thức xác định khi và chỉ khi mẫu khác 0
*Lý thuyết:
1. Phương trình sinx = a.
Xét phương trình sinx = a (1)
- Trường hợp |a| > 1
Phương trình (1) vô nghiệm vì |sinx| ≤ 1 với mọi x.
- Trường hợp |a| ≤ 1
Gọi α là số đo bằng radian của một cung lượng giác. Khi đó, phương trình sinx = a có các nghiệm là:
Nếu số thực α thỏa mãn điều kiện: thì ta viết α = arcsina (đọc là ac-sin-a; nghĩa là cung có sin bằng a). Khi đó, các nghiệm của phương trình sinx = a được viết là:
- Chú ý:
a) Phương trình sinx = sinα; với α là một số cho trước, có các nghiệm là:
và
Tổng quát:
b) Phương trình sinx = sinβ0 có các nghiệm là:
c) Trong một công thức về nghiệm của phương trình lương giác không được dùng đồng thời hai đơn vị độ và radian.
d) Các trường hợp đặc biệt:
+ Khi a = 1: Phương trình sinx = 1 có các nghiệm là .
+ Khi a = – 1: Phương trình sinx = – 1 có các nghiệm là .
+ Khi a = 0: Phương trình sinx = 0 có các nghiệm là .
2. Phương trình cosx = a.
- Trường hợp |a| > 1
Phương trình cosx = a vô nghiệm vì với mọi x.
- Trường hợp .
Gọi α là số đo radian của một cung lượng giác. Khi đó, phương trình cosx = a có các nghiệm là:
- Chú ý:
a) Phương trình cosx = cosα, với α là một số cho trước, có các nghiệm là:
b) Phương trình cos x= cosβ0 có các nghiệm là
c) Nếu số thực α thỏa mãn điều kiện: thì ta viết α = arccosa (đọc là ac – cosin- a, có nghĩa là cung có cosin bằng a). Khi đó, các nghiệm của phương trình cos x = a còn được viết là:
d) Các trường hợp đặc biệt:
+ Khi a = 1; phương trình cosx = 1 có các nghiệm là: .
+ Khi a = – 1; phương trình cosx = – 1 có các nghiệm là:
+ Khi a = 0; phương trình cosx = 0 có các nghiệm là: .
Xem thêm
Lý thuyết Phương trình lượng giác cơ bản (mới + Bài Tập) – Toán 11
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 4 bạn nam và 4 bạn nữ xếp vào 8 ghế được kê thành hàng ngang. Có bao nhiêu cách xếp mà nam và nữ được xếp xen kẽ nhau ?
Câu 2:
Cho đa giác đều 2022 đỉnh.
a) Có bao nhiêu hình chữ nhật có các đỉnh là đỉnh của đa giác ?
b) Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn ?
Câu 3:
Cho parabol (P): . Tìm m sao cho (P) là ảnh của (P’): qua phép tịnh tiến theo vectơ .
Câu 4:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–10; 10] để phương trình vô nghiệm.
Câu 5:
Xét hàm số y = cosx trên khoảng đồng biến trên khoảng có độ dài bao nhiêu
Câu 7:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–2018; 2018] để phương trình m.cosx + 1 = 0 có nghiệm ?
Câu 8:
Gọi I là tâm ngũ giác đều ABCDE (thứ tự các đỉnh theo chiều dương lượng giác). Kết luận nào sau đây là sai ?
Câu 9:
Trong mặt phẳng Oxy, cho đường thẳng Δ: 2x – 3y + 8 = 0. Biết Δ’ = , tìm Δ’
Câu 10:
Cho phương trình . Tính tổng các nghiệm của phương trình trong khoảng (0; 2018).
Câu 14:
Cho m và n là hai số nguyên dương lớn hơn 1. Giả sử a và b là hai đường thẳng song song. Trên đường thẳng a cho m điểm phân biệt. Trên đường thẳng b cho n điểm phân biệt. Số tứ giác có 4 định thuộc tập hợp các điểm đã cho là:
Câu 15:
Nghiệm âm lớn nhất của phương trình có dạng ( . Khi đó tổng a + b bằng