Câu hỏi:
23/07/2024 9,353Cho đa giác đều 2022 đỉnh.
a) Có bao nhiêu hình chữ nhật có các đỉnh là đỉnh của đa giác ?
b) Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn ?
Trả lời:
a) Mỗi hình chữ nhật có hai đường chéo là các đường chéo đi qua tâm của đa giác. Đa giác đều 2022 đỉnh có 1011 đường chéo qua tâm, do đó, số hình chữ nhật là
b) Gọi là các đỉnh của đa giác đều 2022 đỉnh
Gọi (O) là đường tròn ngoại tiếp đa giác đều
Các đỉnh của đa giác đều chia (O) thành 2022 cung tròn bằng nhau, mỗi cung tròn có số đo bằng
Vì tam giác cần đếm có đỉnh là đỉnh của đa giác nên các góc của tam giác là các góc nội tiếp của (O) .
Suy ra góc lớn hơn 100° sẽ chắn cung có số đo lớn hơn 200° .
Cố định một đỉnh . Có 2022 cách chọn
Gọi là các đỉnh sắp thứ tự theo chiều kim đồng hồ sao cho thì và tam giác là tam giác cần đếm
Khi đó là hợp liên tiếp của nhiều nhất cung tròn nói trên
898 cung tròn này có 899 đỉnh. Trừ đi đỉnh thì còn 898 đỉnh. Do đó có cách chọn hai đỉnh . Vậy có tất cả 2022. tam giác thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 4 bạn nam và 4 bạn nữ xếp vào 8 ghế được kê thành hàng ngang. Có bao nhiêu cách xếp mà nam và nữ được xếp xen kẽ nhau ?
Câu 2:
Cho parabol (P): . Tìm m sao cho (P) là ảnh của (P’): qua phép tịnh tiến theo vectơ .
Câu 3:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–10; 10] để phương trình vô nghiệm.
Câu 4:
Xét hàm số y = cosx trên khoảng đồng biến trên khoảng có độ dài bao nhiêu
Câu 6:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–2018; 2018] để phương trình m.cosx + 1 = 0 có nghiệm ?
Câu 8:
Gọi I là tâm ngũ giác đều ABCDE (thứ tự các đỉnh theo chiều dương lượng giác). Kết luận nào sau đây là sai ?
Câu 9:
Trong mặt phẳng Oxy, cho đường thẳng Δ: 2x – 3y + 8 = 0. Biết Δ’ = , tìm Δ’
Câu 10:
Cho phương trình . Tính tổng các nghiệm của phương trình trong khoảng (0; 2018).
Câu 14:
Cho m và n là hai số nguyên dương lớn hơn 1. Giả sử a và b là hai đường thẳng song song. Trên đường thẳng a cho m điểm phân biệt. Trên đường thẳng b cho n điểm phân biệt. Số tứ giác có 4 định thuộc tập hợp các điểm đã cho là:
Câu 15:
Nghiệm âm lớn nhất của phương trình có dạng ( . Khi đó tổng a + b bằng