Câu hỏi:
21/07/2024 111
Rút gọn biểu thức \(A = \frac{{{{(1 - {{\tan }^2}\alpha )}^2}}}{{4{{\tan }^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\) bằng:
Rút gọn biểu thức \(A = \frac{{{{(1 - {{\tan }^2}\alpha )}^2}}}{{4{{\tan }^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\) bằng:
A. 1;
A. 1;
B. – 1;
B. – 1;
C. \(\frac{1}{4}\);
C. \(\frac{1}{4}\);
D. \( - \frac{1}{4}\).
D. \( - \frac{1}{4}\).
Trả lời:
Đáp án đúng là: B
\(A = \frac{{{{\left( {1 - \frac{{{{\sin }^2}\alpha }}{{co{s^2}\alpha }}} \right)}^2}}}{{4.\frac{{{{\sin }^2}\alpha }}{{co{s^2}\alpha }}}} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{{{(co{s^2}\alpha - {{\sin }^2}\alpha )}^2}}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{(co{s^2}\alpha - {{\sin }^2}\alpha + 1)(co{s^2}\alpha - {{\sin }^2}\alpha - 1)}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{(co{s^2}\alpha - {{\sin }^2}\alpha + co{s^2}\alpha + {{\sin }^2}\alpha )(co{s^2}\alpha - {{\sin }^2}\alpha - co{s^2}\alpha - {{\sin }^2}\alpha )}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{2co{s^2}\alpha ( - 2{{\sin }^2}\alpha )}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }} = - 1\)
Đáp án đúng là: B
\(A = \frac{{{{\left( {1 - \frac{{{{\sin }^2}\alpha }}{{co{s^2}\alpha }}} \right)}^2}}}{{4.\frac{{{{\sin }^2}\alpha }}{{co{s^2}\alpha }}}} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{{{(co{s^2}\alpha - {{\sin }^2}\alpha )}^2}}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{(co{s^2}\alpha - {{\sin }^2}\alpha + 1)(co{s^2}\alpha - {{\sin }^2}\alpha - 1)}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{(co{s^2}\alpha - {{\sin }^2}\alpha + co{s^2}\alpha + {{\sin }^2}\alpha )(co{s^2}\alpha - {{\sin }^2}\alpha - co{s^2}\alpha - {{\sin }^2}\alpha )}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)
\( \Leftrightarrow A = \frac{{2co{s^2}\alpha ( - 2{{\sin }^2}\alpha )}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }} = - 1\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 4:
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Câu 5:
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Câu 7:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 9:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 12:
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Câu 14:
Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
Câu 15:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là: