Câu hỏi:
22/07/2024 279
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
A. 1;
A. 1;
B. – 1;
B. – 1;
C. 0;
C. 0;
D. \(\frac{1}{2}\).
D. \(\frac{1}{2}\).
Trả lời:
Dáp án đúng là: C
Ta có : \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ = \frac{{\cos (90^\circ + 18^\circ ).\cot \left( {90^\circ - 18^\circ } \right)}}{{ - \tan (180^\circ - 18^\circ ).\sin \left( {90^\circ + 18^\circ } \right)}} - \tan 18^\circ \)
\( \Leftrightarrow A = \frac{{ - \sin 18^\circ .\tan 18^\circ }}{{ - \tan 18^\circ .cos18^\circ }} - \tan 18^\circ = \frac{{\sin 18^\circ }}{{cos18^\circ }} - \tan 18^\circ = \tan 18^\circ - \tan 18^\circ = 0\).
Dáp án đúng là: C
Ta có : \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ = \frac{{\cos (90^\circ + 18^\circ ).\cot \left( {90^\circ - 18^\circ } \right)}}{{ - \tan (180^\circ - 18^\circ ).\sin \left( {90^\circ + 18^\circ } \right)}} - \tan 18^\circ \)
\( \Leftrightarrow A = \frac{{ - \sin 18^\circ .\tan 18^\circ }}{{ - \tan 18^\circ .cos18^\circ }} - \tan 18^\circ = \frac{{\sin 18^\circ }}{{cos18^\circ }} - \tan 18^\circ = \tan 18^\circ - \tan 18^\circ = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 4:
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Câu 6:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 8:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 11:
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Câu 13:
Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
Câu 14:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Câu 15:
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng:
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng: