Câu hỏi:
20/07/2024 415
Một lớp học có 20 nam và 10 nữ. Hỏi có bao nhiêu cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất một học sinh là nữ?
Một lớp học có 20 nam và 10 nữ. Hỏi có bao nhiêu cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất một học sinh là nữ?
A. 1140;
A. 1140;
B. 2920;
B. 2920;
C. 1900;
D. 900.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Mỗi cách chọn 3 học sinh từ 30 học sinh là một tổ hợp chập 3 của 30 . Do đó, số cách chọn 3 học sinh bất kì từ 30 học sinh của lớp học là: = 4060
Mỗi cách chọn 3 học sinh nam từ 20 học sinh nam là một tổ hợp chập 3 của 20 . Do đó, số cách chọn 3 học sinh nam từ 20 học sinh nam của lớp học là: = 1140
Vậy số cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất 1 học sinh nữ là: 4060 – 1140 = 2920 cách.
Hướng dẫn giải
Đáp án đúng là: B
Mỗi cách chọn 3 học sinh từ 30 học sinh là một tổ hợp chập 3 của 30 . Do đó, số cách chọn 3 học sinh bất kì từ 30 học sinh của lớp học là: = 4060
Mỗi cách chọn 3 học sinh nam từ 20 học sinh nam là một tổ hợp chập 3 của 20 . Do đó, số cách chọn 3 học sinh nam từ 20 học sinh nam của lớp học là: = 1140
Vậy số cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất 1 học sinh nữ là: 4060 – 1140 = 2920 cách.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Lớp 10A có 38 học sinh. Giáo viên muốn chọn 3 bạn học sinh cho 3 vị trí ban cán sự. Hỏi giáo viên có bao nhiêu cách lựa chọn?
Lớp 10A có 38 học sinh. Giáo viên muốn chọn 3 bạn học sinh cho 3 vị trí ban cán sự. Hỏi giáo viên có bao nhiêu cách lựa chọn?
Câu 2:
Tập hợp E ={1; 2; 5; 7; 8}. Có bao nhiêu số tự nhiên chẵn có 3 chữ số khác nhau được lấy từ tập hợp E
Tập hợp E ={1; 2; 5; 7; 8}. Có bao nhiêu số tự nhiên chẵn có 3 chữ số khác nhau được lấy từ tập hợp E
Câu 3:
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác , có điểm đầu và điểm cuối là hai đỉnh của lục giác.
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác , có điểm đầu và điểm cuối là hai đỉnh của lục giác.
Câu 4:
Cho tập hợp E gồm 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?
Cho tập hợp E gồm 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?
Câu 5:
Từ 5 bông hồng vàng, 3 bông hồng trắng, 4 bông hồng đỏ (các bông hồng xem như khác nhau). Người ta muốn chọn ra một bó gồm 7 bông . Có bao nhiêu cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ:
Từ 5 bông hồng vàng, 3 bông hồng trắng, 4 bông hồng đỏ (các bông hồng xem như khác nhau). Người ta muốn chọn ra một bó gồm 7 bông . Có bao nhiêu cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ:
Câu 6:
Trong một kì thi THPT Quốc gia tại một điểm thi có 5 sinh viên tình nguyện được phân công trực hướng dẫn thí sinh thi ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có nhiêu cách phân công vị trí trực cho 5 người đó.
Trong một kì thi THPT Quốc gia tại một điểm thi có 5 sinh viên tình nguyện được phân công trực hướng dẫn thí sinh thi ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có nhiêu cách phân công vị trí trực cho 5 người đó.
Câu 7:
Trong kho đèn trang trí đang còn 5 bóng đèn loại I và 7 bóng đèn loại II. Các bóng đèn khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kì. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II
Trong kho đèn trang trí đang còn 5 bóng đèn loại I và 7 bóng đèn loại II. Các bóng đèn khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kì. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II
Câu 8:
Sắp xếp năm bạn học sinh An; Bình; Chi; Lệ ; Dũng vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếp sao cho Chi luôn ngồi chính giữa là:
Sắp xếp năm bạn học sinh An; Bình; Chi; Lệ ; Dũng vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếp sao cho Chi luôn ngồi chính giữa là:
Câu 9:
Cho tập hợp S = {1; 2; 3; 4; 5; 6}. Có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau lấy từ tập hợp S?
Cho tập hợp S = {1; 2; 3; 4; 5; 6}. Có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau lấy từ tập hợp S?