Thi Online Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Phần 2) có đáp án
Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Thông hiểu) có đáp án
-
731 lượt thi
-
10 câu hỏi
-
45 phút
Danh sách câu hỏi
Câu 1:
23/07/2024Lớp 10A có 38 học sinh. Giáo viên muốn chọn 3 bạn học sinh cho 3 vị trí ban cán sự. Hỏi giáo viên có bao nhiêu cách lựa chọn?
Hướng dẫn giải
Đáp án đúng là: C
Mỗi cách chọn 3 học sinh trong 38 học sinh là một tổ hợp chập 3 của 38
Vậy có = 8436 cách chọn 3 học sinh cho vị trí ban cán sự.
Câu 2:
10/11/2024Cho tập hợp E gồm 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?
Đáp án đúng là: C
Lời giải
Mỗi tập hợp con 8 phần tử của tập hợp được tạo thành là một tổ hợp chập 8 của 10
Vậy số tập hợp con có 8 phần tử của E là:
*Phương pháp giải:
Áp dụng công thức tổ hợp
*Lý thuyết:
Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k ≤ n). Mỗi tập hợp con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.
- Số các tổ hợp chập k của một tập hợp có n phần tử là : .
- Tính chất :
- Đặc điểm: Tổ hợp là chọn phần tử không quan trọng thứ tự, số phần tử được chọn là k: 0 ≤ k ≤ n
Xem thêm
Công thức tính tổ hợp chập k của n và cách giải các dạng bài tập
TOP 40 câu Trắc nghiệm Hoán Vị - Chỉnh Hợp – Tổ Hợp (có đáp án ) – Toán 11
Câu 3:
17/07/2024Trong một kì thi THPT Quốc gia tại một điểm thi có 5 sinh viên tình nguyện được phân công trực hướng dẫn thí sinh thi ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có nhiêu cách phân công vị trí trực cho 5 người đó.
Hướng dẫn giải
Đáp án đúng là: A
Sắp xếp 5 sinh viên vào 5 vị trí là một hoán vị của 5
Vậy có 5! = 120 cách phân công vị trí cho 5 sinh viên
Câu 4:
13/07/2024Cho tập hợp S = {1; 2; 3; 4; 5; 6}. Có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau lấy từ tập hợp S?
Hướng dẫn giải
Đáp án đúng là: A
Mối cách chọn ra 4 chữ số khác nhau từ tập S và sắp xếp để tạo thành số có 4 chữ số là một chỉnh hợp chập 4 của 6
Vậy có = 360 số tự nhiên có 4 chữ số được tạo thành từ 4 chữ số khác nhau của tập hợp S
Câu 5:
15/07/2024Cho lục giác ABCDEF. Có bao nhiêu vectơ khác , có điểm đầu và điểm cuối là hai đỉnh của lục giác.
Hướng dẫn giải
Đáp án đúng là: D
Mỗi cách chọn 2 đỉnh trong 6 đỉnh để sắp xếp thành một vectơ là một chỉnh hợp chập 2 của 6
Vậy có vectơ khác , có điểm đầu và điểm cuối là hai đỉnh của lục giác ABCDEF
Câu 6:
22/07/2024Từ 5 bông hồng vàng, 3 bông hồng trắng, 4 bông hồng đỏ (các bông hồng xem như khác nhau). Người ta muốn chọn ra một bó gồm 7 bông . Có bao nhiêu cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ:
Hướng dẫn giải
Đáp án đúng là: D
Để chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ có 3 phương án thực hiện như sau:
+ Phương án 1: Chọn 3 bông hồng vàng, 3 bông hồng đỏ và 1 bông hồng trắng có: = 120 cách
+ Phương án 2: Chọn 4 bông hồng vàng, 3 bông hồng đỏ có: = 20 cách
+ Phương án 3: Chọn 3 bông hồng vàng, 4 bông hồng đỏ có: = 10 cách
Vậy có: 120 + 20 + 10 = 150 cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ.
Câu 7:
22/07/2024Tập hợp E ={1; 2; 5; 7; 8}. Có bao nhiêu số tự nhiên chẵn có 3 chữ số khác nhau được lấy từ tập hợp E
Hướng dẫn giải
Đáp án đúng là: B
Gọi số tự nhiên có 3 chữ số cần tìm có dạng
- Chọn c ∈ {2; 8} có 2 cách chọn
- Chọn a, b :
Mỗi cách chọn 2 số từ 4 số còn lại và sắp xếp vào vị trí a , b là một chỉnh hợp chập 2 của 4
Do đó, có: = 12 cách
Vậy có 2.12 =24 số tự nhiên chẵn có 3 chữ số khác nhau được lấy từ tập hợp E.
Câu 8:
20/07/2024Một lớp học có 20 nam và 10 nữ. Hỏi có bao nhiêu cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất một học sinh là nữ?
Hướng dẫn giải
Đáp án đúng là: B
Mỗi cách chọn 3 học sinh từ 30 học sinh là một tổ hợp chập 3 của 30 . Do đó, số cách chọn 3 học sinh bất kì từ 30 học sinh của lớp học là: = 4060
Mỗi cách chọn 3 học sinh nam từ 20 học sinh nam là một tổ hợp chập 3 của 20 . Do đó, số cách chọn 3 học sinh nam từ 20 học sinh nam của lớp học là: = 1140
Vậy số cách chọn một nhóm 3 học sinh sao cho nhóm đó có ít nhất 1 học sinh nữ là: 4060 – 1140 = 2920 cách.
Câu 9:
14/07/2024Sắp xếp năm bạn học sinh An; Bình; Chi; Lệ ; Dũng vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếp sao cho Chi luôn ngồi chính giữa là:
Hướng dẫn giải
Đáp án đúng là: A
Để bạn Chi ngồi ở giữa chỉ có 1 sự lựa chọn
Số cách xếp 4 bạn sinh An, Bình, Dũng, Lệ vào 4 chỗ còn lại là một hoán vị của 4 phần tử nên có có 4! = 24 cách.
Vậy có 1.24 = 24 cách xếpCâu 10:
13/07/2024Trong kho đèn trang trí đang còn 5 bóng đèn loại I và 7 bóng đèn loại II. Các bóng đèn khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kì. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II
Hướng dẫn giải
Đáp án đúng là: A
Để số bóng đèn loại I nhiều hơn số bóng đèn loại II có 3 phương án:
+ Phương án 1: 3 bóng đèn loại I và 2 bóng đèn loại II có = 210 cách
+ Phương án 2: 4 bóng đén loại I và 1 bóng đèn loại II có: = 35 cách
+ Phương án 3: 5 bóng đèn loại I có 1 cách
Áp dụng quy tắc cộng có 210 + 35 + 1 = 246 khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II .
Bài thi liên quan
-
Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Nhận biết) có đáp án
-
5 câu hỏi
-
45 phút
-
-
Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Vận dụng) có đáp án
-
5 câu hỏi
-
45 phút
-
Có thể bạn quan tâm
- Thi Online Trắc nghiệm Toán 10 Bài 24. Hoán vị, chỉnh hợp và tổ hợp có đáp án (484 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 24. Hoán vị, tổ hợp, chỉnh hợp (Phần 2) có đáp án (730 lượt thi)
Các bài thi hot trong chương
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 25. Nhị thức Newton (Phần 2) có đáp án (732 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài 23. Quy tắc đếm (Phần 2) có đáp án (641 lượt thi)
- Thi Online Trắc nghiệm Toán 10 KNTT Bài ôn tập cuối chương 8 (Phần 2) có đáp án (584 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 25. Nhi thức Newton có đáp án (480 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 23. Quy tắc đếm có đáp án (383 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài tập cuối chương 8 có đáp án (357 lượt thi)