Câu hỏi:
19/07/2024 241Một cửa hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120 – x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?
A. 80 USD;
B. 160 USD;
C. 40 USD;
D. 240 USD.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Số tiền lãi khi bán một đôi giày của cửa hàng là: x – 40 (USD).
Gọi y là số tiền lãi của cửa hàng bán giày khi cửa hàng bán được x đôi giày.
Ta có y = (120 – x).(x – 40) = –x2 + 160x – 4 800.
Hàm số đã cho có dạng y = ax2 + bx + c, với a = –1, b = 160, c = –4 800.
∆ = b2 – 4ac = 1602 – 4.(–1).(–4 800) = 6 400.
Vì a = –1 < 0 nên hàm số đạt giá trị lớn nhất bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(x = \frac{{ - b}}{{2a}}\).
Khi đó \({y_{max}} = \frac{{ - 6400}}{{4.\left( { - 1} \right)}} = 1600\) khi \(x = \frac{{ - 160}}{{2.\left( { - 1} \right)}} = 80\).*
Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Số tiền lãi khi bán một đôi giày của cửa hàng là: x – 40 (USD).
Gọi y là số tiền lãi của cửa hàng bán giày khi cửa hàng bán được x đôi giày.
Ta có y = (120 – x).(x – 40) = –x2 + 160x – 4 800.
Hàm số đã cho có dạng y = ax2 + bx + c, với a = –1, b = 160, c = –4 800.
∆ = b2 – 4ac = 1602 – 4.(–1).(–4 800) = 6 400.
Vì a = –1 < 0 nên hàm số đạt giá trị lớn nhất bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(x = \frac{{ - b}}{{2a}}\).
Khi đó \({y_{max}} = \frac{{ - 6400}}{{4.\left( { - 1} \right)}} = 1600\) khi \(x = \frac{{ - 160}}{{2.\left( { - 1} \right)}} = 80\).*
Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Dây truyền đỡ trên cầu treo có dạng parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A, B trên mỗi trục AA’ và BB’ với độ cao 30 m. Chiều dài A’B’ trên nền cầu bằng 200 m. Gọi Q’, P’, H’, C’, I’, J’, K’ là các điểm chia đoạn A’B’ thành các phần bằng nhau (C’ chia đoạn A’B’ thành hai phần bằng nhau). Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ’, PP’, HH’, CC’, II’, JJ’, KK’ gọi là các dây cáp treo.
Biết độ cao ngắn nhất của dây truyền trên cầu là C’C = 5 m. Tổng độ dài của các dây cáp treo là:
Dây truyền đỡ trên cầu treo có dạng parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A, B trên mỗi trục AA’ và BB’ với độ cao 30 m. Chiều dài A’B’ trên nền cầu bằng 200 m. Gọi Q’, P’, H’, C’, I’, J’, K’ là các điểm chia đoạn A’B’ thành các phần bằng nhau (C’ chia đoạn A’B’ thành hai phần bằng nhau). Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ’, PP’, HH’, CC’, II’, JJ’, KK’ gọi là các dây cáp treo.
Biết độ cao ngắn nhất của dây truyền trên cầu là C’C = 5 m. Tổng độ dài của các dây cáp treo là:
Câu 2:
Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng:
Câu 3:
Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học phát hiện ra rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ có cân nặng P(n) = 360 – 10n. Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất?
Câu 4:
Một chiếc cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\). Biết cổng có chiều rộng d = 5 m. Chiều cao h của cổng bằng:
Câu 5:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị đi qua điểm A(0; 6). Giá trị biểu thức P = abc bằng
Câu 6:
Cho hàm số \(y = f\left( x \right) = \frac{{x + 2}}{{{x^2} + 1}}\). Gọi (C) là đồ thị của hàm số đã cho và điểm M(m + 1; 1). Giá trị của tham số m để điểm M nằm trên đồ thị (C) là:
Câu 7:
Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.
Biết f(c) = c. Giá trị của b là:
Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.
Biết f(c) = c. Giá trị của b là: