Câu hỏi:

13/07/2024 121

Cho hàm số \(f\left( x \right) = \sqrt {16 - {x^2}} + \sqrt {2023x + 2024m} \) (với m là tham số). Để tập xác định của hàm số chỉ có đúng một phần tử thì \(m = \frac{a}{b}\) (a ℤ, b *), với \(\frac{a}{b}\) là phân số tối giản. Giá trị a + b bằng

A. –1517;

Đáp án chính xác

B. 1517;

C. 6068;

D. –6068.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Biểu thức f(x) có nghĩa khi và chỉ khi \(\left\{ \begin{array}{l}16 - {x^2} \ge 0\\2023x + 2024m \ge 0\end{array} \right.\).

Tức là, \(\left\{ \begin{array}{l} - 4 \le x \le 4\\x \ge - \frac{{2024m}}{{2023}}\end{array} \right.\).

Do đó tập xác định của hàm số là D = \(\left[ { - 4;4} \right] \cap \left[ { - \frac{{2024m}}{{2023}}; + \infty } \right)\)

Ta có tập xác định của hàm số đã cho chỉ có đúng một phần tử.

Nghĩa là, D = \(\left[ { - 4;4} \right] \cap \left[ { - \frac{{2024m}}{{2023}}; + \infty } \right)\) chỉ có đúng một phần tử.

Û \(4 = - \frac{{2024m}}{{2023}}\) Û –2024m = 8092.

Do đó \(m = - \frac{{2023}}{{506}}\).

Vì vậy a = –2023 và b = 506 (vì a ℤ, b *).

Vậy a + b = –2023 + 506 = –1517.

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dây truyền đỡ trên cầu treo có dạng parabol ACB như hình vẽ. Đầu, cuối của dây được gắn vào các điểm A, B trên mỗi trục AA’ và BB’ với độ cao 30 m. Chiều dài A’B’ trên nền cầu bằng 200 m. Gọi Q’, P’, H’, C’, I’, J’, K’ là các điểm chia đoạn A’B’ thành các phần bằng nhau (C’ chia đoạn A’B’ thành hai phần bằng nhau). Các thanh thẳng đứng nối nền cầu với đáy dây truyền: QQ’, PP’, HH’, CC’, II’, JJ’, KK’ gọi là các dây cáp treo.

Media VietJack

Biết độ cao ngắn nhất của dây truyền trên cầu là C’C = 5 m. Tổng độ dài của các dây cáp treo là:

Xem đáp án » 19/07/2024 1,587

Câu 2:

Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng:

Xem đáp án » 20/07/2024 463

Câu 3:

Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học phát hiện ra rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ có cân nặng P(n) = 360 – 10n. Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất?

Xem đáp án » 23/07/2024 463

Câu 4:

Một cửa hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120 – x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?

Xem đáp án » 19/07/2024 241

Câu 5:

Một chiếc cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\). Biết cổng có chiều rộng d = 5 m. Chiều cao h của cổng bằng:

Xem đáp án » 18/07/2024 206

Câu 6:

Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị đi qua điểm A(0; 6). Giá trị biểu thức P = abc bằng

Xem đáp án » 22/07/2024 170

Câu 7:

Cho hàm số \(y = f\left( x \right) = \frac{{x + 2}}{{{x^2} + 1}}\). Gọi (C) là đồ thị của hàm số đã cho và điểm M(m + 1; 1). Giá trị của tham số m để điểm M nằm trên đồ thị (C) là:

Xem đáp án » 17/07/2024 136

Câu 8:

Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.

Media VietJack

Biết f(c) = c. Giá trị của b là:

Xem đáp án » 21/07/2024 128

Câu 9:

Biết rằng hàm số y = f(x) = x3 + 2x + 1 đồng biến trên ℝ. Đặt \(A = {\left( {\frac{{{x^2} + 3}}{{{x^2} + 1}}} \right)^3} + 2\left( {\frac{{{x^2} + 3}}{{{x^2} + 1}}} \right)\) và \(B = \frac{8}{{{{\left( {{x^2} + 1} \right)}^3}}} + \frac{4}{{{x^2} + 1}}\). Khẳng định nào sau đây đúng?

Xem đáp án » 13/07/2024 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »