Câu hỏi:
18/12/2024 11Hàm số nào dưới đây là hàm số bậc hai?
A. y = x4 + 3x2 + 2
B. y =
C = - 3x2 + 1
D. y =
Trả lời:
Đáp án đúng là: C
Lời giải:
Hàm số bậc hai là hàm số cho bởi công thức y = ax2 + bx + x với a, b, c là các hằng số và a ≠ 0.
Vậy trong các hàm số đã cho thì hàm số y = – 3x2 + 1 là hàm số bậc hai với các hệ số a = – 3, b = 0 và c = 1.
Chú ý: Hàm số không phải là hàm số bậc hai, mà đây là hàm số có thể đưa về dạng bậc hai nếu ta đặt .
* Kiến thức mở rộng
Hàm số bậc hai được cho bởi công thức
y = ax2 + bx + c (a ≠ 0).
Tập xác định của hàm số này là D = R
Hàm số y = ax2 (a ≠ 0) đã học ở lớp 9 là một trường hợp riêng của hàm số này.
I. ĐỒ THỊ CỦA HÀM SỐ BẬC HAI
Đồ thị của hàm số y = ax2 + bx + c (a ≠ 0) là một đường parabol có đỉnh là điểm I, có trục đối xứng là đường thẳng x = -. Parabol này quay bề lõm lên trên nếu a > 0, xuống dưới nếu a < 0.
Cách vẽ
Để vẽ parabol y = ax2 + bx + c (a≠0) ta thực hiện các bước
1) Xác định tọa độ của đỉnh I
2) Vẽ trục đối xứng x = - .
3) Xác định tọa độ các giao điểm của parabol với trục tung (điểm (0; c)) và trục hoành (nếu có).
Xác định thêm một số điểm thuộc đồ thị, chẳng hạn điểm đối xứng với điểm (0; c) qua trục đối xứng của parabol, để vẽ đồ thị chính xác hơn.
4) Vẽ parabol.
Khi vẽ parabol cần chú ý đến dấu của hệ số a (a > 0 bề lõm quay lên trên, a < 0 bề lõm quay xuống dưới).
II. CHIỀU BIẾN THIÊN CỦA HÀM SỐ BẬC HAI
Dựa vào đồ thị hàm số y = ax2 + bx + c (a≠0) ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau
Từ đó, ta có định lí dưới đây
Định lí
Nếu a < 0 thì hàm số y = ax2 + bx + c nghịch biến trên khoảng (–∞; -); đồng biến trên khoảng (-; +∞).
Nếu a > 0 thì hàm số y = ax2 + bx + c đồng biến trên khoảng (–∞; -) nghịch biến trên khoảng (-; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một đội y tế gồm có 220 nữ và 280 nam dự định chia thành các nhóm sao cho số nữ và số nam ở mỗi nhóm đều nhau, biết số nhóm chia được nhiều hơn 1 nhóm và không lớn hơn 5 nhóm. Hỏi có thể chia thành mấy nhóm? Khi đó mỗi nhóm có bao nhiêu nam bao nhiêu nữ.
Câu 3:
Một phép chia có số chia là 5, số dư là 1. Để phép chia là phép chia hết thì cần thêm vào số bị chia bao nhiêu đơn vị?
Câu 9:
Tìm số tự nhiên x bé nhất trong các số 2; 3; 4; 5 sao cho 2,6 × x > 7
Câu 10:
Gọi M; N lần lượt là trung điểm của các cạnh AB; AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?
Câu 11:
Xét các số nguyên dương chia hết cho 3. Tổng số 50 số nguyên dương đầu tiên của dãy số đó bằng
Câu 12:
Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Tính S.
Câu 14:
Tính diện tích toàn phần của hình trụ có bán kính đáy a và đường cao a