Câu hỏi:
19/11/2024 161Hàm số nào dưới đây đồng biến trên khoảng
A.
B.
C.
D.
Trả lời:
Đáp án đúng : C
*Lời giải:
Xét từng đáp án:
+ tính đạo hàm từng hàm số rồi xét xem dấu trên bảng biến thiên
c) y = căn x +1
=> y' = 1 / (2căn x) > 0 với mọi x > 0
*Phương pháp giải:
- Tìm điều kiện cho hàm số đó xác định rồi tính đạo hàm và xét sự đồng biến/nghịch biến của hàm số đó
*Các dạng bài tập thường gặp sự đồng biến/nghịch biến của hàm số:
a) Dạng 1: Tìm các khoảng đơn điệu của hàm số.
* Phương pháp làm bài:
– Bước 1: Tìm tập xác định của hàm số đã cho.
– Bước 2: Tính đạo hàm f′(x) , sau đó tìm các điểm x1,x2,…,xn mà tại đó đạo hàm của hàm số bằng 0 hoặc không xác định.
– Bước 3: Xét dấu đạo hàm và đưa ra kết luận về khoảng đồng biến và nghịch biến của hàm số.
+ Các khoảng mà f′(x)>0 là các khoảng đồng biến của hàm số.
+ Các khoảng mà f′(x)<0 là các khoảng nghịch biến của hàm số.
b) Dạng 2: Tìm giá trị của m để hàm số đơn điệu trên R.
* Phương pháp làm bài:
– Bước 1: Tính f′(x).
– Bước 2: Nêu các điều kiện của bài toán:
+ Hàm số y=f(x) đồng biến trên R⇔y′=f′(x)⩾0,với ∀x∈R và y′=0 tại một hữu hạn điểm.
+ Hàm số y=f(x) nghịch biến trên R⇔y′=f′(x)⩽0,với ∀x∈R và y′=0 tại một hữu hạn điểm.
– Bước 3: Từ các điều kiện trên sử dụng các kiến thức về dấu của nhị thức bậc nhất và tam thức bậc hai để tìm m.
c) Dạng 3: Tìm m để hàm số đơn điệu trên miền D đã cho trước.
* Phương pháp làm bài:
– Bước 1: Nêu các điều kiện để hàm số đơn điệu trên D:
+ Hàm số y=f(x) đồng biến trên D⇔y′=f′(x)⩾0, với ∀x∈D.
+ Hàm số y=f(x) nghịch biến trên D⇔y′=f′(x)⩽0,với ∀x∈D.
– Bước 2: Từ điều kiện trên hãy sử dụng các cách suy luận khác nhau cho từng bài toán để tìm m.
- Bước 3: Kết luận
d) Dạng 4: Tìm m để hàm số đồng biến, nghịch biến trên khoảng
– Bước 1: Tính y′
– Bước 2: Nêu điều kiện để hàm số đồng biến và nghịch biến:
– Bước 3: Đưa ra kết luận.
Xem thêm các bài viết liên quan hay, chi tiết:
Trắc nghiệm Sự đồng biến, nghịch biến của hàm số (có đáp án)
Bài tập Sự đồng biến nghịch biến của hàm số Toán 12 mới nhất
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đạo hàm Có bao nhiêu số nguyên dương m để hàm số đồng biến trên khoảng
Câu 3:
Một vật thể nằm giữa hai mặt phẳng và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ là một hình tròn có diện tích bằng 3π. Thể tích của vật thể là
Câu 5:
Một khối nón và một khối trụ có chiều cao và bán kính đáy đều bằng 1. Tổng thể tích của khối nón và khối trụ đó bằng
Câu 7:
Có bao nhiêu cặp số thực (x; y) sao cho và là số đo ba góc một tam giác (tính theo rad) và
Câu 8:
Có bao nhiêu điểm M thuộc đường cong sao cho tiếp tuyến của (C) tại M vuông góc với đường thẳng OM.
Câu 10:
Gieo một đồng tiền xu cân đối và đồng chất bốn lần. Tính xác suất để cả bốn lần đều xuất hiện mặt sấp.
Câu 11:
Cho ba số và theo thứ tự lập thành một cấp số cộng. Công sai của cấp số cộng này bằng
Câu 14:
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng và đường thẳng Đường thẳng qua và cắt (P), d lần lượt tại B và sao cho C là trung điểm của AB. Giá trị của biểu thức bằng
Câu 15:
Trong không gian với hệ toạ độ Oxyz, cho hai điểm , . Gọi M,N,P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ (Oxy),(Oyz),(Ozx) sao cho M,N,P nằm giữa A và B thoả mãn . Giá trị của biểu thức a+b+c bằng