Câu hỏi:
14/07/2024 140Hai chiếc ô tô A và B cùng xuất phát từ hai địa điểm, di chuyển theo đường thẳng. Trên màn hình ra đa (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo km), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của ô tô A có tọa độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 2t\\y = t\end{array} \right.\), vị trí của ô tô B có tọa độ Q(t; 3 + 2t). Góc giữa hai đường đi của hai ô tô A và B bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là:
Ô tô A di chuyển theo hướng có vectơ chỉ phương \({\vec u_A} = \left( { - 2;1} \right)\).
Ô tô B di chuyển theo hướng có vectơ chỉ phương \({\vec u_B} = \left( {1;2} \right)\).
Gọi α là góc giữa hai đường đi của hai ô tô A và B.
Ta có: \[\cos \alpha = \left| {\cos \left( {{{\vec u}_A};{{\vec u}_B}} \right)} \right| = \frac{{\left| {{{\vec u}_A}.{{\vec u}_B}} \right|}}{{\left| {{{\vec u}_A}} \right|.\left| {{{\vec u}_B}} \right|}}\]
\[ = \frac{{\left| { - 2.1 + 1.2} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2} + {2^2}} }} = 0\].
Suy ra α = 90°.
Vậy góc giữa hai đường đi của hai ô tô A và B bằng 90°.
Do đó ta chọn phương án D.
Hướng dẫn giải
Đáp án đúng là:
Ô tô A di chuyển theo hướng có vectơ chỉ phương \({\vec u_A} = \left( { - 2;1} \right)\).
Ô tô B di chuyển theo hướng có vectơ chỉ phương \({\vec u_B} = \left( {1;2} \right)\).
Gọi α là góc giữa hai đường đi của hai ô tô A và B.
Ta có: \[\cos \alpha = \left| {\cos \left( {{{\vec u}_A};{{\vec u}_B}} \right)} \right| = \frac{{\left| {{{\vec u}_A}.{{\vec u}_B}} \right|}}{{\left| {{{\vec u}_A}} \right|.\left| {{{\vec u}_B}} \right|}}\]
\[ = \frac{{\left| { - 2.1 + 1.2} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2} + {2^2}} }} = 0\].
Suy ra α = 90°.
Vậy góc giữa hai đường đi của hai ô tô A và B bằng 90°.
Do đó ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với giá trị nào của m thì hai đường thẳng d1: 2x – 3y – 10 = 0 và d2: \(\left\{ \begin{array}{l}x = 2 - 3t\\y = 1 - 4mt\end{array} \right.\) vuông góc với nhau?
Câu 2:
Phương trình đường thẳng đi qua điểm A(–2; 0) và tạo với đường thẳng d: x + 3y – 3 = 0 một góc 45° là:
Câu 3:
Nếu góc giữa hai đường thẳng d1: x + 2y – 7 = 0 và d2: \(\left\{ \begin{array}{l}x = 3 + 3t\\y = - 2 - mt\end{array} \right.\) bằng 30° thì m gần nhất với giá trị nào sau đây?
Câu 4:
Cho hai điểm A(2; 2), B(5; 1) và đường thẳng ∆: x – 2y + 8 = 0. Lấy điểm C ∈ ∆. Điểm C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. Tọa độ của C là: