Câu hỏi:
10/01/2025 15
Có bao nhiêu tam giác mà ba đỉnh của nó được lấy từ các đỉnh của một lục giác đều?
Có bao nhiêu tam giác mà ba đỉnh của nó được lấy từ các đỉnh của một lục giác đều?
A. 8
B.20
C. 120
D. 216
Trả lời:
Đáp án đúng là: B
* Lời giải:
Một lục giác đều có 6 đỉnh.
Số tam giác mà ba đỉnh của nó được lấy từ các đỉnh của một lục giác đều là:
(tam giác)
Vậy có 20 tam giác được lấy từ các đỉnh của một lục giác đều.
* Phương pháp giải:
Một tổ hợp chập k của n là một cách chọn k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 0 ≤ k ≤ n).
Số các tổ hợp chập k của n, kí hiệu là , được tính bằng công thức :
* Lý thuyết nắm thêm
1. Hoán vị
Một hoán vị của một tập hợp có n phần tử là một cách sắp xếp có thứ tự n phần tử đó (với n là một số tự nhiên, n ≥ 1).
Số các hoán vị của tập hợp có n phần tử, kí hiệu là Pn, được tính bằng công thức
Pn = n.(n – 1).(n – 2) … 2.1.
Chú ý :
+ Kí hiệu n.(n – 1).(n – 2) … 2.1 là n! (đọc là n giai thừa), ta có : Pn = n!.
Chẳng hạn với n = 3 ta có P3 = 3! = 3.2.1 = 6.
+ Quy ước 0! = 1.
2. Chỉnh hợp
Một chỉnh hợp chập k của n là một cách sắp xếp có thứ tự k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 1 ≤ k ≤ n).
Số các chỉnh hợp chập k của n, kí hiệu là , được tính bằng công thức:
= n.(n – 1)…(n – k + 1) hay (1 ≤ k ≤ n).
Chú ý :
+ Hoán vị sắp xếp tất cả các phần tử của tập hợp, còn chỉnh hợp chọn ra một số phần tử và sắp xếp chúng.
+ Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy Pn =
3. Tổ hợp
Một tổ hợp chập k của n là một cách chọn k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 0 ≤ k ≤ n).
Số các tổ hợp chập k của n, kí hiệu là , được tính bằng công thức :
Chú ý :
+) <
+) Chỉnh hợp và tổ hợp có điểm giống nhau là đều chọn một số phần tử trong một tập hợp, nhưng khác nhau ở chỗ, chỉnh hợp là chọn có xếp thứ tự, còn tổ hợp là chọn không xếp thứ tự.
4. Ứng dụng hoán vị, chỉnh hợp, tổ hợp vào các bài toán đếm
Các khái niệm hoán vị, chỉnh hợp và tổ hợp liên quan mật thiết với nhau và là những khái niệm cốt lõi của các phép đếm. Rất nhiều bài toán liên quan đến việc lựa chọn, việc sắp xếp, vì vậy các công thức tính Pn, , sẽ được dùng rất nhiều.
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - Toán 10 Kết nối tri thức
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một đội y tế gồm có 220 nữ và 280 nam dự định chia thành các nhóm sao cho số nữ và số nam ở mỗi nhóm đều nhau, biết số nhóm chia được nhiều hơn 1 nhóm và không lớn hơn 5 nhóm. Hỏi có thể chia thành mấy nhóm? Khi đó mỗi nhóm có bao nhiêu nam bao nhiêu nữ.
Câu 3:
Một phép chia có số chia là 5, số dư là 1. Để phép chia là phép chia hết thì cần thêm vào số bị chia bao nhiêu đơn vị?
Câu 7:
Gọi M; N lần lượt là trung điểm của các cạnh AB; AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?
Câu 8:
Tìm số tự nhiên x bé nhất trong các số 2; 3; 4; 5 sao cho 2,6 × x > 7
Câu 9:
Xét các số nguyên dương chia hết cho 3. Tổng số 50 số nguyên dương đầu tiên của dãy số đó bằng