Câu hỏi:
01/11/2024 383Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OC = 2a, OA = OB = a. Gọi M là trung điểm của AB. Tính khoảng cách giữa hai đường thẳng OM và AC
A.
B.
C.
D.
Trả lời:
Đáp án đúng: A
*Lời giải
*Phương pháp giải
- áp dụng công thức tính khoảng cách giữa đường thẳng và mặt phẳng
*Lý thuyến cần nắm và các dạng bài toán về khoảng cách:
Khoảng cách từ một điểm đến một đường thẳng
Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.
Kí hiệu: d(O; a).
Khoảng cách từ một điểm đến một mặt phẳng
Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).
Khoảng cách giữa đường thẳng và măt phẳng song song.
- Định nghĩa: Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).
Kí hiệu là d(a; (α)) .
Khoảng cách giữa hai mặt phẳng song song.
Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.
- Kí hiệu: d((α); (β)).
Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).
Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.
- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).
Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N
Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).
Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.
Do đó, ∆ là đường vuông góc chung của a và b.
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Khoảng cách (mới + Bài Tập) - Toán 11
Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 7
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Điểm nằm trên đường tròn có khoảng cách ngắn nhất đến đường thẳng d:x-y+3=0 có tọa độ M(a;b). Khẳng định nào sau đây là đúng?
Câu 3:
Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số Mệnh đề nào dưới đây đúng?
Câu 4:
Cho m, n là các số nguyên dương khác 1. Gọi P là tích các nghiệm của phương trình P nguyên và đạt giá trị nhỏ nhất khi:
Câu 5:
Tính tổng của tất cả các số có 5 chữ số đôi một khác nhau được lập thành từ tập
Câu 6:
Cho hình lập phương ABCD.A'B'C'D' có tất cả các cạnh bằng 1. Gọi M là trung điểm của BB' .Tính thể tích khối A'MCD
Câu 10:
Cho hàm số y=f(x) có đúng ba điểm cực trị là 0; 1; 2 và có đạo hàm liên tục trên R. Khi đó hàm số có bao nhiêu điểm cực trị?
Câu 12:
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 13:
Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số trên đoạn [0;2] không vượt quá 30. Tính tổng tất cả các phần tử của S
Câu 14:
Một con châu chấu nhảy từ gốc tọa độ đến điểm có tọa độ là A(9;0) dọc theo trục Ox của hệ trục tọa độ Oxy. Hỏi con châu chấu có bao nhiêu cách nhảy để đến điểm A, biết mỗi lần nó có thể nhảy 1 bước hoặc 2 bước (1 bước có độ dài 1 đơn vị).