Câu hỏi:

19/07/2024 279

Cho tam giác ABC có \(\widehat A = 60^\circ \), \(\widehat B = 45^\circ \), b = 4. Tính cạnh a.

A. \(2\sqrt 6 \);

Đáp án chính xác

B. \(3\sqrt 6 \);

C. \(6\sqrt 2 \);

D. \(6\sqrt 3 \).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A.

Theo định lí sin ta có

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)\( \Rightarrow a = \frac{{b.\sin A}}{{\sin B}}\)\( = \frac{{4.\sin 60^\circ }}{{\sin 45^\circ }} = 2\sqrt 6 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC biết AB = 4, BC = 6, \(\widehat B = 120^\circ \). Độ dài cạnh AC là

Xem đáp án » 20/07/2024 291

Câu 2:

Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.

Xem đáp án » 12/07/2024 260

Câu 3:

Cho tam giác ABC có a = 4, b = 6 và cosC = \(\frac{2}{3}\). Giá trị của c bằng:

Xem đáp án » 11/07/2024 205

Câu 4:

Cho tam giác nhọn MNP có \(\widehat N = 60^\circ \); MP = 8 cm; MN = 5 cm. Số đo của góc M gần nhất với giá trị:

Xem đáp án » 20/07/2024 192

Câu 5:

Cho tam giác DEF có DE = 4 cm; DF = 5 cm và EF = 3 cm. Số đo của của góc D gần nhất với giá trị nào dưới đây?

Xem đáp án » 12/07/2024 172

Câu 6:

Cho tam giác ABC có \(\widehat A = 120^\circ \), AB = 1, AC = 2. Trên tia CA kéo dài lấy điểm D sao cho BD = 2. Tính AD.

Xem đáp án » 16/07/2024 166

Câu 7:

Cho góc xOy bằng 60°. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = \(4\sqrt 3 \). Tính độ dài đoạn OA để OB có độ dài lớn nhất.

Xem đáp án » 22/07/2024 163

Câu 8:

Cho tam giác ABC có BC = 5, CA = 6, AB = 7. Côsin của góc có số đo lớn nhất trong tam giác đã cho là

Xem đáp án » 19/07/2024 158

Câu 9:

Cho tam giác ABC có \(\widehat A = 112^\circ \), AC = 7 và AB = 10. Tính độ dài của cạnh BC và các góc B, C của tam giác đó.

Xem đáp án » 20/07/2024 154

Câu 10:

Cho tam giác ABC có \(\widehat A = 63^\circ \), \(\widehat B = 87^\circ \), BC = 15. Tính độ dài cạnh AB, AC của tam giác đó.

Xem đáp án » 20/07/2024 151

Câu 11:

Cho tam giác ABC nhọn biết a = \(\sqrt {24} \), c = \(2 + \sqrt {12} \) và bán kính của đường tròn ngoại tiếp tam giác ABC là R = \(2\sqrt 2 \). Tìm cạnh b của tam giác ABC biết b là số nguyên.

Xem đáp án » 18/07/2024 133

Câu hỏi mới nhất

Xem thêm »
Xem thêm »