Câu hỏi:
12/07/2024 161
Cho tam giác ABC biết a = 46, \(\widehat B = 43^\circ 42'\), \(\widehat C = 16^\circ 20'\). Chọn đáp án có câu trả lời đúng.
A. \(c \approx 14,93\);
B. \(b \approx 38,68\);
C. \(c \approx 13,93\);
D. \(\widehat A \approx 129^\circ 58'\).
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Trong tam giác ABC:
\(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 180^\circ - \left( {43^\circ 42' + 16^\circ 20'} \right) = 119^\circ 58'\).
Theo định lý sin ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
\( \Rightarrow b = \frac{{a.\sin B}}{{\sin A}} \approx \frac{{46.\sin 43^\circ 42'}}{{\sin 119^\circ 58'}} \approx 36,68\).
Và \(c = \frac{{a.\sin C}}{{\sin A}} \approx \frac{{46.\sin 16^\circ 20'}}{{\sin 119^\circ 58'}} \approx 14,93\).
Hướng dẫn giải:
Đáp án đúng là: A.
Trong tam giác ABC:
\(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 180^\circ - \left( {43^\circ 42' + 16^\circ 20'} \right) = 119^\circ 58'\).
Theo định lý sin ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
\( \Rightarrow b = \frac{{a.\sin B}}{{\sin A}} \approx \frac{{46.\sin 43^\circ 42'}}{{\sin 119^\circ 58'}} \approx 36,68\).
Và \(c = \frac{{a.\sin C}}{{\sin A}} \approx \frac{{46.\sin 16^\circ 20'}}{{\sin 119^\circ 58'}} \approx 14,93\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC biết a = 3, b = 5, c = 7. Tìm khẳng định đúng trong các khẳng định sau?
Câu 3:
Cho tam giác ABC biết a = 16, c = 12, \(\widehat A = 60^\circ \). Tìm kết quả đúng trong các câu sau?
Câu 4:
Biết tam giác ABC có a = 16, b = 17, c = 20. Chọn phương án có kết quả đúng nhất?
Câu 5:
Cho hình thoi ABCD có cạnh bằng 2 cm và \(\widehat {ABC} = 60^\circ \). Tìm khẳng định SAI trong các khẳng định sau?
Câu 6:
Cho tam giác ABC biết AB = 3, \(AC = 3\sqrt 2 \) và \(\widehat C = 45^\circ \). Trong các phương án dưới đây, chọn phương án SAI?
Câu 7:
Giải tam giác ABC biết a = 10, \(\widehat B = 50^\circ ,\widehat C = 60^\circ \).
Câu 8:
Tam giác ABC có b = 12, c = 15, \(\widehat A = 140^\circ \). Khi đó, tìm khẳng định sai trong các khẳng định dưới đây?