Câu hỏi:
17/07/2024 894
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y > 0\\x - 3y + 3 < 0\\x + y - 5 > 0\end{array} \right..\) Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho:
A. A(–2; 2);
B. B(5; 3);
C. C(1; –1);
D. O(0; 0).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Cách 1: Xét từng phương án.
• Xét điểm A(–2; 2):
Ta có: \(\left\{ \begin{array}{l} - 2 - 2 = - 4 < 0\\ - 2 - 3.2 + 3 = - 5 < 0\\ - 2 + 2 - 5 = - 5 < 0\end{array} \right.\)
Do đó cặp số (–2; 2) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm A(–2; 2) không thuộc miền nghiệm của hệ bất phương trình đã cho.
• Xét điểm B(5; 3):
Ta có: \(\left\{ \begin{array}{l}5 - 3 = 2 > 0\\5 - 3.3 + 3 = - 1 < 0\\5 + 3 - 5 = 3 > 0\end{array} \right.\)
Do đó cặp số (5; 3) thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm B(5; 3) thuộc miền nghiệm của hệ bất phương trình đã cho.
Đến đây ta có thể chọn phương án B.
• Xét điểm C(1; –1):
Ta có: \(\left\{ \begin{array}{l}1 - \left( { - 1} \right) = 2 > 0\\1 - 3.\left( { - 1} \right) + 3 = 7 > 0\\1 + \left( { - 1} \right) - 5 = - 5 < 0\end{array} \right.\)
Do đó cặp số (1; –1) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm C(1; –1) không thuộc miền nghiệm của hệ bất phương trình đã cho.
• Xét điểm O(0; 0):
Ta có: \(\left\{ \begin{array}{l}0 - 0 = 0\\0 - 3.0 + 3 = 3 > 0\\0 + 0 - 5 = - 5 < 0\end{array} \right.\)
Do đó cặp số (0; 0) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm O(0; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
Ta chọn phương án B.
Cách 2:
• Ta thấy hệ có bất phương trình x – y > 0 nên ta có x > y.
Do đó điểm thuộc miền nghiệm của hệ phải thỏa mãn hoành độ lớn hơn tung độ.
Khi đó ta loại phương án A và D.
• Hệ có bất phương trình x + y – 5 > 0 nên x + y > 5.
Do đó điểm thuộc miền nghiệm của hệ phải thỏa mãn tổng hoành độ và tung độ lớn hơn 5. Ta loại phương án C.
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Cách 1: Xét từng phương án.
• Xét điểm A(–2; 2):
Ta có: \(\left\{ \begin{array}{l} - 2 - 2 = - 4 < 0\\ - 2 - 3.2 + 3 = - 5 < 0\\ - 2 + 2 - 5 = - 5 < 0\end{array} \right.\)
Do đó cặp số (–2; 2) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm A(–2; 2) không thuộc miền nghiệm của hệ bất phương trình đã cho.
• Xét điểm B(5; 3):
Ta có: \(\left\{ \begin{array}{l}5 - 3 = 2 > 0\\5 - 3.3 + 3 = - 1 < 0\\5 + 3 - 5 = 3 > 0\end{array} \right.\)
Do đó cặp số (5; 3) thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm B(5; 3) thuộc miền nghiệm của hệ bất phương trình đã cho.
Đến đây ta có thể chọn phương án B.
• Xét điểm C(1; –1):
Ta có: \(\left\{ \begin{array}{l}1 - \left( { - 1} \right) = 2 > 0\\1 - 3.\left( { - 1} \right) + 3 = 7 > 0\\1 + \left( { - 1} \right) - 5 = - 5 < 0\end{array} \right.\)
Do đó cặp số (1; –1) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm C(1; –1) không thuộc miền nghiệm của hệ bất phương trình đã cho.
• Xét điểm O(0; 0):
Ta có: \(\left\{ \begin{array}{l}0 - 0 = 0\\0 - 3.0 + 3 = 3 > 0\\0 + 0 - 5 = - 5 < 0\end{array} \right.\)
Do đó cặp số (0; 0) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.
Vậy điểm O(0; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
Ta chọn phương án B.
Cách 2:
• Ta thấy hệ có bất phương trình x – y > 0 nên ta có x > y.
Do đó điểm thuộc miền nghiệm của hệ phải thỏa mãn hoành độ lớn hơn tung độ.
Khi đó ta loại phương án A và D.
• Hệ có bất phương trình x + y – 5 > 0 nên x + y > 5.
Do đó điểm thuộc miền nghiệm của hệ phải thỏa mãn tổng hoành độ và tung độ lớn hơn 5. Ta loại phương án C.
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Miền nghiệm của hệ bất phương trình là miền chứa điểm nào sau đây?
Câu 2:
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x > 0\\2x - \frac{3}{2}y - 1 \ge 0\\4x - 3y - 2 \le 0\end{array} \right..\) Khẳng định nào sau đây là sai?
Câu 3:
Hệ bất phương trình nào dưới đây là hệ bất phương trình bậc nhất hai ẩn:
Câu 4:
Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?