Câu hỏi:
18/07/2024 136Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 4\\x \ge 0\\x - y - 1 \le 0\\x + 2y - 10 \le 0\end{array} \right..\) Gọi điểm có toạ độ (x; y) thuộc miền nghiệm của hệ bất phương trình sao cho F(x; y) = x + 2y đạt giá trị lớn nhất. Số điểm thoả mãn là:
A. 0;
B. 1;
C. 2;
D. 3.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \[\left\{ {\begin{array}{*{20}{c}}{0 \le y \le 4}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}y \ge 0\\y \le 4\end{array}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right.\]
Trên mặt phẳng Oxy:
• Biểu diễn miền nghiệm của bất phương trình: y ≥ 0.
Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: y = 0) chứa điểm (0; 1).
• Biểu diễn miền nghiệm của bất phương trình: y ≤ 4.
Miền nghiệm của bất phương trình y ≤ 4 là nửa mặt phẳng (kể cả đường thẳng d2: y = 4) chứa điểm (0; 1).
• Biểu diễn miền nghiệm của bất phương trình: x ≥ 0.
Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: x = 0) chứa điểm (1; 0).
• Biểu diễn miền nghiệm của bất phương trình: x – y – 1 ≤ 0.
Vẽ đường thẳng d4: x – y – 1 = 0 đi qua hai điểm (0; –1) và (1; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 – 0 – 1 = –1 < 0 nên miền nghiệm của bất phương trình x – y – 1 ≥ 0 là nửa mặt phẳng (kể cả bờ d4) chứa điểm O(0; 0).
• Biểu diễn miền nghiệm của bất phương trình: x + 2y – 10 ≤ 0.
Vẽ đường thẳng d5: x + 2y – 10 = 0 đi qua hai điểm (0; 5) và (10; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 + 2.0 – 10 = –10 < 0 nên miền nghiệm của bất phương trình x + 2y – 10 ≤ 0 là nửa mặt phẳng (kể cả bờ d5) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3, d4 và d5) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Miền nghiệm của hệ bất phương trình là miền ngũ giác OABCD với O(0; 0), A(1; 0), B(4; 3), C(2; 4) và D(0; 4).
Xét biểu thức F(x; y) = x + 2y:
Tại O(0; 0): F = 0 + 2.0 = 0;
Tại A(1; 0): F = 1 + 2.0 = 1;
Tại B(4; 3): F = 4 + 2.3 = 10;
Tại C(2; 4): F = 2 + 2.4 = 10;
Tại D(0; 4): F = 0 + 2.4 = 8.
F(x; y) đạt giá trị lớn nhất bằng 10 tại hai điểm B(4; 3) và C(2; 4).
Vậy có 2 điểm thỏa mãn yêu cầu đề bài. Ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \[\left\{ {\begin{array}{*{20}{c}}{0 \le y \le 4}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}y \ge 0\\y \le 4\end{array}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right.\]
Trên mặt phẳng Oxy:
• Biểu diễn miền nghiệm của bất phương trình: y ≥ 0.
Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: y = 0) chứa điểm (0; 1).
• Biểu diễn miền nghiệm của bất phương trình: y ≤ 4.
Miền nghiệm của bất phương trình y ≤ 4 là nửa mặt phẳng (kể cả đường thẳng d2: y = 4) chứa điểm (0; 1).
• Biểu diễn miền nghiệm của bất phương trình: x ≥ 0.
Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: x = 0) chứa điểm (1; 0).
• Biểu diễn miền nghiệm của bất phương trình: x – y – 1 ≤ 0.
Vẽ đường thẳng d4: x – y – 1 = 0 đi qua hai điểm (0; –1) và (1; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 – 0 – 1 = –1 < 0 nên miền nghiệm của bất phương trình x – y – 1 ≥ 0 là nửa mặt phẳng (kể cả bờ d4) chứa điểm O(0; 0).
• Biểu diễn miền nghiệm của bất phương trình: x + 2y – 10 ≤ 0.
Vẽ đường thẳng d5: x + 2y – 10 = 0 đi qua hai điểm (0; 5) và (10; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 + 2.0 – 10 = –10 < 0 nên miền nghiệm của bất phương trình x + 2y – 10 ≤ 0 là nửa mặt phẳng (kể cả bờ d5) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3, d4 và d5) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Miền nghiệm của hệ bất phương trình là miền ngũ giác OABCD với O(0; 0), A(1; 0), B(4; 3), C(2; 4) và D(0; 4).
Xét biểu thức F(x; y) = x + 2y:
Tại O(0; 0): F = 0 + 2.0 = 0;
Tại A(1; 0): F = 1 + 2.0 = 1;
Tại B(4; 3): F = 4 + 2.3 = 10;
Tại C(2; 4): F = 2 + 2.4 = 10;
Tại D(0; 4): F = 0 + 2.4 = 8.
F(x; y) đạt giá trị lớn nhất bằng 10 tại hai điểm B(4; 3) và C(2; 4).
Vậy có 2 điểm thỏa mãn yêu cầu đề bài. Ta chọn phương án C.