Câu hỏi:
12/07/2024 179Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0. Giá trị của m để khoảng cách từ A đến hai đường thẳng bằng nhau là:
A.
B. m = 1 và m = 4
C.
D. m =- 1 và m = 4
Trả lời:
Sử dụng công thức khoảng cách ta có
Đáp án là phương án C.
Chú ý. Học sinh có thể thử lại các phương án được đưa ra để chọn đáp án đúng, tuy nhiên sẽ tốn nhiều thời gian hơn là làm bài toán trực tiếp.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho điểm A(1;3) và đường thẳng d: 2x – 3y + 4 = 0. Số đường thẳng qua A và tạo với d một góc là:
Câu 2:
Cho đường thẳng ∆ có phương trình 3x – 4y + 2 = 0. Điểm nào sau đây không nằm trên đường thẳng ∆?
Câu 3:
Cho hai đường thẳng : 3x – 4y +2 = 0 và : mx +2y – 3 = 0. Hai đường thẳng song song với nhau khi:
Câu 4:
Cho đường thẳng ∆ có vectơ chỉ phương là . Vectơ nào sau đây là vectơ pháp tuyến của ∆?
Câu 5:
Cho tam giác ABC với A(-1; -1), B(2; -4), C(4; 3). Diện tích tam giác ABC là:
Câu 6:
Cho ba đường thẳng . Giá trị của m để hai đường thẳng d1;d2 cắt nhau tại một điểm nằm trên d3 là
Câu 7:
Cho hai đường thẳng d1: y = 3x – 1 và Góc giữa hai đường thẳng là:
Câu 8:
Cho ba đường thẳng . Giá trị m để hai đường thẳng d1;d2 cắt nhau tại một điểm nằm trên d3 là
Câu 9:
Cho điểm A(1; 3) và hai đường thẳng . Số đường thẳng qua A và tạo với các góc bằng nhau là
Câu 10:
Cho α là góc tạo bởi hai đường thẳng . Khẳng định nào sau đây là đúng?
Câu 11:
Cho hai điểm A(-4; -1), B(-2; 1). Điểm C trên đường thẳng ∆: x – 2y + 3 = 0 sao cho diện tích tam giác ABC bằng 40 (đvdt). Khi đó tung độ của điểm C là
Câu 12:
Cho đường thẳng ∆ có phương trình y = 4x – 2. Vectơ nào sau đây là vectơ pháp tuyến của ∆?
Câu 13:
Cho tam giác ABC, biết phương trình ba cạnh của tam giác là AB: x – 3y – 1 = 0, BC: x + 3y + 7 = 0, CA: 5x – 2y + 1 = 0 Phương trình đường cao AH của tam giác là:
Câu 14:
Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC: x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0. Khi đó diện tích của tam giác ABC là:
Câu 15:
Cho đường thẳng ∆ có một vectơ chỉ phương là . Vectơ nào dưới đây không phải là VTCP của ∆?